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Trianqulated category Qf singularities

Notation: A = @iz Ai : noetherion gmaed algebra/ k.

modA: the category of finitely gererated right A - moaules.

grA : the category of finitely generated, graded right A - modules.
Mod A+ the category of all right A- modules .

GrA : the category of all graded right A- modules.

(py: GrA — GrA v peZ. Mp)i = Mpxi.

Def. The triangulated aategory of singularities Dsy(A) / DA s
Oefined as the quotient

DP(modAY | D proj-A)

D°(grAyv/ DPegr.proj-A)

Rk DEA/ Dyl A) is tnvial if A has finite homological dimension.

To compute the morphisms in DA (DsyA)), we have the
Jollowing

Lemma. (1. v Te DAY (DgglA)), IMeGA ( madA) depending on
T 81 T=Mcka
d, T as above, if A has finite injective dimension, then vR>o,
I M as above with Exta(M,A)=0, vi>0.
diy. Let Me gr-A st ExtaM,A)=0, ¥i>0 . Then, Y N€EgrA, we
haue
HomDsy4) (M, N) = Homgra (M, N)/ R
where R is the ideal of morphisms that factor throygh @ projective.



Sketch of pf: Toke a bounded above projective resolution:
pP— T

The stupid trunaation gives us

0— FEPIP — P — TP —g
which leads to a A in DA

gD — P —s R L, gk g
For k>0, we get T*P = H™ (22D y& M, since T is bounded.
Then in D&(A), we have

T =P = Mtk

(i Jollows from T being bounced. =

Quotient category ¢of  graded modules

A =iz Ai + noetherion groded algebra/k . Ao =lk cconnected).

forA S grA « finite dimensional modules.

TorA €(GrA: torsion modules In the sense that ¥ meM, 3N20 st
YT\'(@thAh) = 0.

Ir's eosy to Check that torA (resp. TorA) are thick Subastegonies

and we n toke the quotients

Def’ agriA) 2 grAl torA . The objects are taken 1o be the Same o8
gA (deroted M), YMegrA), and morphisms

Homagra (M), THINYY = Ling\e (M, M)
where M/M' is finite dim'l.

Sfmilaﬁg defre QGr(AY, ond agrA) € QGrA). We can identify  these
aoregones with Con(X) / QGoh(X) , where
X = [Proj(A) = [(Spec A\ fov) / Gem]



More explicitly, we state this as:

Prop. A as aboue , commutative, The category of (quasiy coherent
sheaues on  [Proj(Ay is equivalent to the aaegory ggrA (QGrA). o

As o oor. Jf A s genemted by deg I elements, ProjA = ProjA
(its coarse moduli 8pacey and we obtain the classical Sere's thm.

Now i we dencte the canonical projection
T: grA — ggrA
T: GrA — QGA
we have their nght adjoints :
L+ QgrA — grA } OTNZ B, Homae(TIA, TIN ()
0 =@GPA ——>€rrA
Thus Q is leff exact, ond since QGrA has enough injectives, we have
its right denived functor
RO : D'(QGHAY — DI(GA)
It's proved by Artin and Zhang that under mild assumptions

o X"+ Extatk,M) hos its grading right bounded Jor all i, ¥MegA

RO restricts to
Rw: D°ggrA) — D (grA)
Note that Rw is fully fathful since mRw =Id.

(Gorengtein  algebras
Let A be a graded algebra with finite injective dimension both as a left
and night module. We have two functors:



D=RHoma(-, A): DgrAT — DgrA*),
D'=RHomp(-, A): Dblgr‘ B) ——>Db(gr‘/4)

Def. (e sy o connected, graded Noethenian dlgebra A s (Gorenstein
if it hos:

(. finite injective dimension n;

(. Dk = RHoma(k. A) & kat-n1 for Some integer o
(0. is colled the Gorensein parameter of A).

iy = A aatisfies condition X" o that we have a fully Sithfil
Ru - DX ggrA) — DgrA»

Thm. Let A be Gorenstein with Gorensten parameter a. Then D%(A)
and D%agrAr are related as follows:
(), If a>0, there is a Semz‘orthc@ona( Oecomposition -
OggrAy = <TtAc-am, —. TA , DEAY>
iir. If <o, there is a semiorthogonal olecomposttion
DEA) = <ak, ~, Qkawy, D°wgrA) >
where @: DgrA) — D&M is the natural projection.
iin. If a=o, there is an equivalence
D&A) 2 D°cggrAr
Pr omitted. The “dliscrepancy " Comes about when 0pplyng Cluality:
D: Db(QT‘A 2 ) — Db(gf‘/\os—f‘-a—l) m

Eg Llet A be Gorensten with Gorenstein porameter @. Suppose A has
fintte homological dlimension, then Dg(AY =0. Thm. = azo and
D°agrA) has a full strong exceptional collection



T=<TA©), - TAG-1>
Thus DqgrAy is equivalent to the cderived aategory
D (mod QA
where
Q(A) = Endagm (B TA) = Endga (% Ady) .
As an even more special case. toke A= KTXe, -, %nl, we recover

(Belinson): IP" admits @ Hull exeeptiondl collection <O, -+, Ocny >,

More generally, P"(Go,-, 0 has a Jull exceptional collection
<O, -, Otz0i-n>

Eg As onother eg. let A be ﬁnh“e dim'[ Gorenstein ¢ a.k.o..
Frobenius  algebray. In this cose ggrA is tnvidl So that by the
thm, a<o and DA admits a full exceptional sequence ¢NOT
gtrong thoygh 1)« <ako, -, gka@tn>

Howeuer , one con check that the modules  Adita+1)/At+0+) 2a
Jorm a &irong exceptional sequence.

(Forenstein - Schemes

Let X be a aomnected projective Corenstein scheme of dinn ana
2 a very ample line bundle on X. A = @i HUX, L), Assume
Jurthermore that Hi(X, %) =0 VRe2Z, j#0,n. (Ths hdds. for
instance, when X is a complete intersection in PNy

Lemma. Let X be os above with tx=1" for some re Z. Then
A is a Gorenstein a(gebr‘a with (Torenstein porometer a=r.



Pf It sqﬁ?ces fo Show that Spec/\ is a (orenstein Scheme.
This 8 a local question , and our assumptions reduce us to check
this only at ©
By assumption,
RQUTAN = RHom(O, ez O¢j)
RUNOUMAN = ®jez H(OGN = A
-x*
= |R'QUTAN = @jez H'(O()) = Bjez H(Oj-ri* = A
RO (MA) = 0 :f i£0,N
where A% =Homk (A, k) 5 the restncted dual @C A.
Now adjunction glues : Vse Z
RHomer( kesy, RQ(TT(AY) = RHomaa-( (ki) , TA)) =0
The obove computation Shows that the spectml Seguence
5% = RPHoman (k. REQ(TI(AYY)
degenermes ot Ea, -+, En and
dn s R™Homea tk, A) =5 R°Homanm (k. A
= Homem (k, Homy(A k) ) (r
_ = Am
S[m(lar‘(g, R'Homea (k, AY = 0 UC jEna, =
RHomgn(k,A) = |k [-n-113
Lastly, A hog finite Krull dim =+t finshes the angument. e

Cbmbfm‘ng the lemma. with the algebraic thm, we obtain:

Thm X as in the lemma. Then D°(CohtX)) and DA ore
reloted os follows:

(0, If r>0, i.e. X is Fano, then there is a semiorthogonal
decomposition::



DPChX) =< L™, -, Ok, DEA
i If r<o. ie. X 8 of general type, then there is o Sem-
omfhogonal decomposition:
DEA) = gk, -, gk, DChXN >
(@ If r=0, i-e. X is Coobi-You, then 3 equivalence
DE A = D(GohX) e

In the followig. we wil try 1o understand DAY more coneretely.

Matrix factonzation
Let B=ixBi be a fintely generated comected groded algebra/ k. WeB a
centrol element of gy n which is not a zero duisor. A% BIWS

Def. (. The exact category MFW) consists of -
Objects: ordered pars P=(Pe 2P +Po) st B.P are free B-modules
0gPo=n, degpi=0 ond PoPi= W-IdP  pumpo=w-Idp..
morphisms :
P 2P B,
HOM(Q@)={'QC=(58,JO.) ‘ d@f.‘:o, ond lfo 0 lﬁ ) J/fo

Qo 225 Q1 2 Go

Rmk: We also identify objects of M with 2-periodic Sequences:
K'= (- —> KE L Kt‘ﬂ ﬂ) Kfﬂﬁ’“‘ )

st RMR'=w , ond K'[23= K.

ih. f: P — Q eMFw is led nul-homatopic if 38: P — @,
ttP— Qo st



° JC|= Qumt SP,
l‘y lf;/ lf/ i & {J%= fcr::’D;r a8

Rmk: In terms of 2-periodic Sequences, this is the usual notion of
homotopy  equivalence.
(ih. The homotopy category HMFwWo is the quotient MFw» by null-homotopies.

It's easy to check that HMFw s tiangulated with -
Trondotion - K01'= (Koia'= K™, dkea = -d™).
Core: f: K" —L", the core as \:f they are complexes.
Triangle :  Standord  triongles -
LT — ¢ — Ko
A A in HVMFw is one that's isomorphic to the image of a standard
one 03 aboue.

Matrix foctorization v.s. hypersurfoce Singularities
Main Thm. I B has fite homolcgioal dimension, then there is an
equivplence Of Qtegones :

F: HMFw) — D&(A).

The proof will be completed in o Sequence ¢f lemmas. Before doing that,
we conbine it with our previous thm to dbtain:

Thm. Let X=A" and W a homogeneous polynomiol of deg d. Let Y be
the hypersurfuce of degree d gen by w=o0. Then DXCoh(Y) and
HMFw) are rebted a8 follows -



(h. If d<N, ie. Y is Fano, then there is a semiorthogonal decomposition
DPGohY) =<Os(d-N+1y, -, Oy, HMFwh»
dy. If d>N, ie Y is of general type, then there is a semiorthogonal
decomposition :
HMFw) = <Fq ckerey, -, Flgdky, DGR >
where 4 CDb(Qr‘A) — D&(A) is the naturd projection, and F is the
equivalence of the previous thm.
diy. If d=N, ie. Y is CY, then we have an eguivalence:
HVE ) = D Coh())

Rk Similar results hold for hypersurfoces in weighted projective spaces.

Before storting the proof of the thm, we proue an dgebraic lemma about
reduction of  MFw) o Comp(A):

Lemma. V K'e MFw), K'®A is an ayclic complex in Comp(AY.
Pf. Consider the diagrom:

0 — K2 EL K Gheb™y —s 0

oo w fw

0— ki A&, K" — Gk —0
Notice that wlckdy =0 since v Xe k(R %w= RE™X) €ImR’. Snake
lemma. = _

0 — Coh(B™) — K @A —>K"'@sA —> CokiR) — 0

This implies that K'®sA is aaylic. -

Now we prove the main thm. (e fret dgﬁne e
K'eMFw) = 3 ses,.
0 —K' KB g — Chk — 0,
ond v xeK®, xw= R'RW=0 modImk? = CkR™ is an A-module.



Lemmo, (ng o F). Cok exterds to an exact functor:
MFw» —&8— oA

Lo

HVF(w) —— DYA)

OF. Let F be the compositon MFuw) <& oA — D&A). T show
gdescends to F on HMFw), we need to check that if fi K'— L
s null-homotopic, then it goes to 0 in DA,

Congiger the decomposition of

K —ES K —— (kR —— 0

s F l 8% l l

B} L (T
Pel! % "ol — L°®A — 0 where U =( 0 )

-
or l p»l l
LS L —— R — 0
This yelds a foctonzation of CokR™— L° @A — (k€™ through a
free mogue = Fefy =0 in DA,
Our previous lemma implies that we hove a se.s.
0 — Cok (RY—K'®A — (k(R) —0
Snce K'®eA is fee, Cohekh=CkeRhma in DAY But by our def
Cok (R = F(K't1). Hence F commutes with [11.

It pllows by oef that F tokes a A t A. Ths finishes the progf
of the [emma. -

Now we need to check that



. Fis fully- J‘bfﬁyﬁl.

ai. F i essentiolly surjective on objects.

(WJe show (i now and prove ¢y in the next Subsection:

Since B hos finite homo(ogm( dimenson => A has finite injective clim.
By the first lemma, any T'e DA an then be replaced by MegrA st
Exta(M,AY=0, ¥ (>0. Thus D(M)=RHoma(M,A) is a (g? A -module ,
so that we may choose a left projective A-module resolution Q" — DM .
Duwdlizing again we get a nght projective resolution:

0—M— P 2D(Q)
Now 0 —B B8 —A-—o0 imples that |, any projective A-mod
when rejorded as o B-mod, has Exts(P.N)=o0, vi>l, vNe B-mod
tie. pdsP <1). Therefore QHom(M N) = RHom(P' N), and the s.s.
Exth (P TN) = Exta(M,N)
implies if  Exta(M, N) =0 o if i>1. Thus by dim shiffing, if' we choose
a free B-mad K°—» M, the kamel K is a projective B-mod.
Since B is connected graded, K™ is jfree. Thus we obtain:
0—K' 2K M —0
Now since multiplication by w is 0 on M, we hawe, as B-mod,
0—K' K M —s0
W2l o
0—K'EBK —M—0
Hence we obtain @ homotopy R+ K* — K st RR'=w, RimF=w,
In this way we get the desired double periodic complex of free B-mad. o

Fully- faithfidness
Bejore Showing this, we moke a simpe obseruation:
Lemma, The A-modues Cor(R™ for any K'€ MFw» satigfles:



Exta (QkRY,A) =0, Vi>0.
Rf: By a previous lemma,

s KA B K @eA s KogaA — (okil™y — 0

s exact and each K'&sA is o fiee A-mod. Now ExticCodr, Ay
s computed as the homology of the cdual complex of the above. The
result follows. o

This obseruation dllows us to replace morphisms  fom (OR(R™Y in DA
by A-moaule maps , via a previous lemma.

Lemma. Cok - MFw) — DE(A) s Jull
Pf: Ay CoR(RY — Goki?™ con be [iffed to a B-mod map
0 — K™ &5 K° (kB — 0
AN E R
0— " 5L Gk — 0
since K° is flee. We extend this to £ finy, f¥=funy, vie 2. Then
f:K' — L is a morpham , gnce €' is :ryecﬁue and:

2'f'R°- €f)—fbi?° £0f°= fw-wf'=o

Consequently, F is full as well. It now syffices to check that-

O

Lemma. F is faithful , te. F(KY=0 = K'=0 in HMFw)

Of: FlK) =0 = Cok(k™ is a perfct complex of A-modules. In fact
CokeR™ is a projective A-module. Indeed, 3m st. Exta(Cok(RM, N) =

¥ i2m, ¥ N€ A-mod. The exact complex:

0 — CoR(E™) —K™"BsA — ~ — K @A £ K gA — (oh(K) — 0



gues us, by dim sffirg. that
Exta((GRIF*™,NY=0, V(>0 ,V NeA-mod
= (oR(R™™") i projective = so is CRR™") = QRR™" (-mny.
Now we hawe a lff Cobek™ L K@eA splitting the projection. (We
can use it to get a factorization of ses. of B-modules (87 U

0 — K™, K —s (o) — 0
s &/ 1§

o — K™ K® — K°®A —0
h—Zl Lid lpr

0 — K", K — (o) — 0

Since prof = idexty , we have o homotopy 8° K°— K™ st.
SR™'=id¢' - k8"
{ R"8°= jdke - U
Moreower, we have by commutativity of the cliagram:
0= UR™ - Ws™=uk™ - 8t =(U- stMmR"HR™
= U=8'mR® (A kKRY— K° nonzero)
In this way we get the homotopy (S &) ST
{ 8%™ = idk - R*S™
R'8°= ide - 8'R°  (8'=8%m) =

Rmk: Such o homotopy giues us that K™ is isomorphic to the obuiously
contractible MF = (- K® 2 K* K Wy KO s )



Appendix: Semiorthogonal decomposition

Nototion: AJ € Q « ful triongulated  subeategory.
A2 {Me DI HomaN,My=0, v Ned} + right orthogonal
*A) 2 {MeD!| HmotM,N)=0, ¥NeA} left orthogoraal

]

Def 1 N =D : enteading of ful trianguiated Subcategories. Al is colled
right (resp. left) admissible if 1 has a right (resp. left) adjoit Q: D —w.
A is called camissible (f it's both leff andl right aomissible.

Lemma I I: N enD as in the def If A is nght (resp. left ) admissible,
then QIU = A* (resp. Ay, Conversely, f Q:D— DN hos a lg?
(resp. nght) adjoint, then DIA = AJ™ (resp. *A), O

Def. 0. As in lemma1, if AJ is night tesp. [eff) acmissible, e Sy
that D has a weok Semiorthogonal decompasition < AJ*, AJ > Cresp.
<N.A>)

. More gererally, <AJ. -, An> is cdled a wenk semiorthogonal olecomposition
if there is a Sequence of leff admissble suboategores W=D € Da < -
€ Dn ond Ap 18 l@ﬁ orthogonal © Op-1 in Dp ( Op=<Dpa, Ap>).
iy, In i, f all Ap are aomissible, then the Oecomposition <A), -, An >

is aolled semiorthogorol. .

In the cboe def, D= <A~ Akp> is vay Simple when
(. Mi 18 gererated by one object Ei;
. Hom(Ei,Epy=0 if pto.
di. Hom(Ew B =0, vp if ().



DOef 0. An dbject E is called exeptional if Hom(E.Etpa) = 0 when p#o,

. An exceptional Cdllection is @ Seguence Qf exceptional objects (Eo, -

En) Saﬂg@t‘ng Hom(Er,EJ'EpJ) =0, ¥p when ).

i), An exceptional colection is caled full if it gererates D. In this

se D has a semiorthogonal decomposition with Ap = <Ep».

v). An exceptional collection i3 alled Strong j in addition, Vij, p+o,
Hom(Ei, Ejcpa) = o .



