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81. Finite Subgroups of  Su
o COHJUQ&LH closses in Uy
Recoll the J%Uowing standarol foct J‘Fbm linear clpebm.
Any matrix in Ut is conjugate to a diogonal matrix. i.e
vV AeUm, 3Beln st BAB" = diagth. . hn), where reS'ec”
The Xi's are ncthing but the epenuolues ‘3)0 A.

Note that the order of Ai’s is unimportont Snce permuting Ai's can
be realized by Qonjugating by a matrix in Um.

Consequently , the conjugay class of a manx Aelny is determined
by the unordered set of its eigenualues.

The some story applies to SUmy without much effort - the conjugay

doss of o matix AeSUm) is Oetermined by its unordered get of
eigenualues = Anl M=An=18 In J‘bct Uy is geremated by SUcny
and  Um =4 AId [ [Al=t}, but under conjugation, UM acts trvially.

E'S' Su2)
In"this case, the conjugacy classes are pararmetrized by 16 =1} = U,
upto identification of A and X=X'

umf\\x

* The conjugation representation of U on Mattn.©)
Let Um act on Matin.©) by conjugation. We shall decompose it into
treal) irredlucible  subrepresentations.

The first observation to moke i that U preseres the subspaes




g“ Hermition onol anti-Hermitian  matrices
Mat(n.C) = (Hemmition) @ (Anti- Hermition)

* %

and the U action preserves these subgpaces:
B Hemmition, AcUm == (ABA™)"=(A""B*A*= ABA™
B onti-Hemmition, A€l = (ABA™)*=(A""B"A* = - ABA™

Notation:
W+ 2 the space cf Hermitian matrices
W-£ the space of anti-Hemmitian rrodrices

Note that these are only renl representations of U and muttipliaation
by ¢ is on isomorprism of real Um)-modkles:

TNk

We an do a Uttle better, since conjugation preserves tmes

W+ = {Trace 0 Hermitian matrices} @ {11d | XeIR}

8 — -y, B,
Denote WS 2{Tae 0 Hemitian matricest, W° 2 {Trace O anti- Hermitian matrices} .
We hae Shown that:

Lemma 1 As reol representations of Um)
Matn. €)= IR Id @ Wi @iRId ®W? O

® The double cover SU) — SO@)

We shall iy to relate fintte subgroups of SUay to finte subgroups of
SO, 6ince SO@), beng the rotational Symmetry group of the unit
sphere S in IR}, is more intuitive.



Consider a 2x2 invertible complex matrix
A- ( Q b)
c d

A= aelt_A (d 'b)
- al.
Thus jﬁr such an A to lie in SUs, we just need
detA=|
{ d -b _ a C
(—c a)—(E 5!)
ie. A=d, c=-b, ond detA=0d-bo=1aP+bi=1. (rite Q=X +i%. b=Xasti%s,
This ident«ﬁes Suey as

su —{(a b)
(2) = -E 7

= {xtxdedema=1] xeR}t= PR,
the unit 3-sphere in the 4-diml Euclidean Space.

whose inverse is

0.be €, 1aP+ib*= }

Continuting our enrlier example of conjugary classes of Sl we see
that, the conjugaoy closs of ' A€SUcay s completely dletermineol by
A= a8 = 2%
(onversely. the et of eigenvalues 2. X} is determined by:
foxotifi-xz}

A
@Mml , + A.A are roots of the equation
A 2= TrAYX +0etA = X= 2% X+1 = O

Thus, each conjugacy closs of SU s just the set of matrices in
SU) with a fired tmoe walue 2% (-1<x€1), which is iderttified as
{x3end+na=1- %2} 2 S




a two Sphere cf rodius Ji=x2. (When =11, this sqys that the matrices
t1 J%rm their own Cory‘ugacg closs ). pn‘C‘C‘OﬁO.Uﬁ:

Imagine this to be the 3-gphere
‘%% of SU. The conjugacy closses
-1 / 1 are just preimoges of trtAy=2x
‘ w Except for the poles” 11, these
o conjugacy closses are geometnically

—o- - 2X 2-gpheres with uarious raolii.
-2 2

A[fernaﬁuelg, SU@) an be descrbed as the goup of unit quaternions. In
Joct. quaternions IH may be identified as
H2IRIO WSS Mat2.€C)
| | — Id
e S e A A TN (S EN
Recall that we have Shown : under the conjugation action of SU@. W2 is
inuariant . Now
W° =4 Traceless anti- hermitian matrices’
=RLOR.LDIRR
Moreover ,
{AeSu | TrA=0} = {(“x:m; ?x?j:xx:) ’2“'=°. XEe XTG4 =1 }
= { okt M+ i | xZexiend=1 )
beng a conjugacy closs in SU@). is also the unit sphere in WS
= The conjugation action cf SU on W2 acts transitively on the

‘unit sphere” = {tmeeless elements in S},

Now we are close to what we need: We have produced o representation
SU@ — GLIW) = GLGIR) so that SUey preserves the unit gphere” of
R®. We shall impose a norm on W2 so that SUc) preserves the norm,
ond the “unit sphere” becomes the genuine unit sphere under this norm.



By the same considemation as for Um AMatin.©), a natwal candidate
Jor the nom g (X.YYETr(XY) sne Tr on W2 is preserved
under conjugation action by SUcy: VAeSU@. X.YeW?:
(AX, AYY =Tr(AXAAYAY
=Tr (AXYA™)
Tr (XY
= (XYY
ond it's readi(@ Seen to be bilinear. Furthermore, we have :
Trel-iy=-2 Tt dy=o0
Trd-ir=-2 Tk =
Tr(R-RY=2 Tr-Ry=0.
Hence f we resale (X, Y)Z-3(X.Y)=-3Tr(XY), Wwe obtain a Eudidean
inner product on W2 . w.r.t. which 4L, 1, RS ﬁ)rms an o.n.b.

1]

Combining the obove discussion. we have exhibited & map .
Su) — Aut(We2, (. 2 Art(IR? ¢, ) = O,
It remains to show that:
(. The imoge of Su les in SOy 3
. The map SU) —— S0 is Surjective ;

(iii. Analﬁze Kery =17

(y s eosily guanranteed by the topology of SUe: The group homomarphism
SUR) — 0> is Continuous (i.e. elements in SU@) close to Id moves
vectors i W2 only @ litle> , and SUcy is connected, being a sphere.
Thus its image in O must be connected. Since SOB) is the connected
component qf 05 Contair@ [, imcSU) € S0y, (We shall dencte the
homomorphism:

Y: SU) — SO,
Exercise: Show that any continuous homomorphism  S'— G, where G is @



discrete group, i the riviel one.

(iy. To Show that ¥ 8 Surjective , consider the action of
A(({J):(el(p o) (0P <T)

_i¢p

o e

AR = AR A-py =R
0 iz

ond on the pne RieRi ={(2 3)|zec}=C, Aw ads as
A(LP) (O ci) A(-(P):(O [e'zl'tt:_z

2ip
1IZ 0

ez 0
e it acts as Clockwise rotation of the compex plane by the angle 2¢.

J

_\l L

z—pl—ane

In summary, Ay acts on We as the rotation about the R-oaxis by
an arge of 2¢ (0s<2p<an : all the rotations).

Next, we have shown that Sl acts transitively on the unit sphere
S of We. Thus V Pe S, 3BeSUm st B.R=BRB'=P, and the
subgroup  BA@R™ S SU  (02p<m) consists of all rotations about the
oxis through 1P.-P} :

Now we conclude from the well- known fact that SO@) consists of al rotations
obout uarious axXis through the origin that ¥ maps SUy surjectively oo
S0®».



iy, What's the kemel of v: Suay— SO@7
Aekery < A acts trivielly on W2 : ¥XeW2, AXA™=X.
(But A commutes with (IRIo triuiolly )
< A acts trivially on W- = iIRIH©We.
(i W- =5 Wk s an iSomorphism f\Jf SUcy rep’s)
< A acts Tn'uraug on Mat2.€)E WO W-.
<= A e Z(Mat2.€») NSU) = C-Id NSue) = {£1},

Ex. Show that Z(SUm) ={ IR Id | &= 9277” ,0<ken-1}
In summory, we have  shown:

Thm.2. There exists a 2:1, Surjective group homomonphism
y: SU@y — SO
of (Liey groups , with Kerv = {2Id}.

® Finite subgroups of SO@).
We sholl use the fo[(owirg well-Rnowon:

Thm 3. Finite subgroups Qf 80@ are clossified 08 follows:
There ore two infinite families:
* Cn: oylic group of order n.
® Dan: dihedral group of order 2n ;
and 3 more exceptional COSES:
® As«: the rotational symmetry group of @ tetmhedlron.
® S4: the rotational symmetry growp of' o cube/ octahedron
® As: the rotationol gymmetny goup of an icosahedron/ dodecmheoiron

For @ proof, see M. Artin : Algebra.



More  geometrically, we have the following presentation of these groups:

G < O IG| | Geometric description of genemators

-\Q
Cr=<alar=1> n QB/

a

Dh=<a.blo’=b=wby=i> | 2n /bwb
"7
As=<a.bla’=b= @by=1 2 A
b
am
\D

1 b

Su={a.bla®=b=@br=1y | 24 JAtS

b

As=<a.blo’=b>=wby’=1> | 60 .0‘

(L

* Finite subgroups of SU)

Observe that in SUw, there is only one element of order 2, namely -1.
This is because any matrix A€SUm can be conjugated to a dliagonal
matrix of the fom (*x) and for it to be of onder 2. A=-1. In
controst, there are lots of elementts of order 2 in SO (take oy
rotation by T about any direction in IR®!). Thus the preimages of these
order 2 elements in R® under Y are all of order 4.

Now, let G be a finite subgroup of SU and H=v(G) be its image



in S0y, Since ¥ is 2:1, there are two posshbilites
M. IGl=1HI, and Ylg: G =1,
. IGI=2IH\, ond -1€G, HeG/{iI}
Also note that ﬁom our class[ﬁcaﬁon list jbr SO®y, IHI is even unless
Hz= Can s cyclic of odd order. Other than this IHI is even = IGI is

even = (3 has an order 2 element (elementary group theory !y, ond we are
in Cose (i,

We anolyse case by ase
@. H= Cn. There are two possibilites:
@iy n=2k+.. Then GaHz Grn or Gz=GxHz Caghey
@.iv n=2k. Then G/{tl}2He Gk = G2 Cs, or GxCr, The latter
is ruled out Since there would be more than | order 2 elements in G.
Thus G is always cydic. Such G is always conjugate to one gf the

:
J% G—{(s O) 3= e”gh, oshm}

. H2Dm.= H=G/{tI}. In this case H2Cn as @ (normal) Subgroup
= VN =CGnEG by cose @), of index 2, and thus must be
normal. Since Dan=Chlla-Gr (@ of order 2)=> G=V"(H)= Gn 1L &'Can, where

=0 and @ must have order 4. Then G con be conjugated 1o the group
genenated.  by:

{(% :) S o) \ 3= em , o<k<n }
We denote this group by Dan, dlled the binary dihedral group. Note that
Dan ¢ Dun gince the latter hos mony order 2 elements.

D;n __V_) :DZH 01V
- g  with Y=
Czn Cﬂ



Rmk: It's not hard to quw»e out the Structure of Dan dlirectly Jfrom eementary
group theory: Let t be the generaton gf Can. 8=pct) €Cn (EDan) a generator.
Then vyvetyva™ = asa’'= 8" =Yty = a'ta'=t" or -t". But uj-‘ ato=-t"
= @tY=-t"a'0't=1 = Qt=t=30"=t=30'= G is abelion. Contradiction.
So ata'=t" and it's isomorphic to the group above,

©. HzAw, St As. = H=GH1IE In these coses the comesponding G's
e Oenoted A4. Si. A5, called the binary tetrahedron group, binary
octohedron group. binary - icosohedron group respectively.

Rmk: Note that A% #Su. As 2Ss. Since Sa. Ss have more than |
order 2 elements.

By now, we hove clossifled all Afnite subgroups of Suc.

Thm 4. Finite subgrougs of SUR) are classified as follows:

G S SuR Presentation G
Cn @alah=15 n
Din a.bl 03=B"=wbyy | 4n
A: <a.bl g3=b*=@ab? | 24
Sh bl 0=br=mb*> | 48
As @bl 03= b =(@by*y | 120




82. The McKay Graph

Let V=C?be the 2-dimensional representation of SUt2). By restricting it
to any finite Qubgroup G of SU@, we obfin @ 2-diml  representation
of G. dfil denoted by V. Note that V is imeducible unless G = Ch,
the only finite abelan subgoups of SU Cotherwise VaUBW i
a sum of 2 1-dm' representations => G S C*xC” is abelian). This
representation plays a pivotal role in what follows.

Lemma 5. V is o elf-duol representation.
Pf: VgeG. 3BeSu st. BQB"=(3 x')  where [A1=1. Thus
K@y = trv@) = Trv(BgB™=Ar X' =242 €IR
= %v is real = V i8 self-aual. O

Rmk: Using charocter theory for comnected compact Lie groups , we see that
V s a self-dual representation for SU. Such an isomorphism N/ — V¥
IS not hord to exihibit:
vo=(2 BeSum=> g'= (4 )= @=(S 7). Let h=(0 3). Then
h'gh =@gt=g*.

Let Vi, Vj be two imep's of G. Consider the multiplicity of Vi in Vj®V.
m(Vi, V@\Vj) = dim HomatVi. V@V, = dim Home (V®V;. Vi,

Lemma 6. m(Vi, VoV)) = muyj, Ve,

Pf. Since mVi, V@V))e Zz0, MVi, VOV)) = MVi, VOV)). =
m(\/,-,V@\/J-)=mef.V®VJ‘)

a1 Zge@ %itg) Xug)%ig)

= 6 Zgea @ WK

& Yaeq N@PAG %@ (V is self-dual

(. XX




= m(Vj. VeV,

Rmk: In generdd. it's true that v X.Y,Z reps of G-
Homa (X, Z® Y ) & Homg(X®Z*, Y)
If X2Vi. YaV), Z=Vea V¥, Toking Oimengion of both Sides, we obtain:
M(Vi, V@V)) = dimHoma (Vi V®V;)
= dimHoma (Vi®V, Vj>
= m{V;, VieVv).

* Construction of the groph
Notation: & m(Vi.v@V)) . Then aj=0ji. by lemma 6,

Now to each finite subgroup G of SU), we assocate with it a graph
' as follows:

Vertices : Irrep's Vi of G
Edges: The (. th vertices are Conrected by 0y edges.

Moreover, to each uvertex, we ossgn to it an n'nfeger oi = dimVi, colled the
weight.

Eg GzGr=<ala=1>.

We know that in this cagse. Irep's Qf G are all 1 dimensional
Tvep@={Vo, Vo = Vb
where a octs on Ve by multiplioation by R=e™ | o0zk<n. Moreower,
since a=("' #), we see that VEVi®Va ( Vi=Vni). Thus vV
Vi ®V 2V ®\VidV-) = Vin @V
Hence in the groph:



and the whole graph (ooks like:
V-t Vo

Vha
\

® Common feafums of McKoy graphs.
Now we discuss general properties of the graph.

Note that ﬁ)r\ G non-abelian, \/ is irreducible, €®V v, Thus T
always contoins & portion Like:

| 2_/’

C \'

For any vertex Vi. consider all the vertices Connected to it:
e

dr
Ve

Then by dxgﬁnfﬂon. VieV = GB\/J-QU, ‘Toking - dlimensions of both sides, we
get:

2di = = O.U d'_]
Later we will show that, except for two degenerate cases, uertices in
any McKoy graph are connected by at most | edge.

Thm. 7. McKay graphs are connected.
Pf: By the example above, it suffices to prove for G nonabelian. We
shall prowe by contradiction.

Assume for some G . T is not connected. Then. by our dliscussion
obove, 3 irep Vi of G not contained in the Connected component of



I 2 :
T
Note that the imeps of &G occuring in this component are precisely
those inneps occuning - inside V" for wrious ne Zzo by Oefition).
Thus such Vi must satisfy -
(. %P =0, ¥Yn=z0
& (i, MW)=0, vnzo
& %TZS Xi@ /)T@"zo
& GWZ@ K =0 (V is setf-dualy
Bﬂ eprlier discussion in 81, Nv@rel2,21 and Xu=-2 ff g=-1 .
Xuig)=2 ff g=1L Since we have assumed that G is non-abelion, -1 G
Dividing both Sides of the equation by 2", and multiplying by 1GI, we obtoin:
Ty %@ (8" =0, ynso
& NG + KD D"+ Zigiaic ’X.'cg)(xvz@ =0 . vn20
Since -1€ Z2(3). by Shurs lemma, -1 acts on Vi by a scalar rmatrix. Since
CI¥=I, it an only act as tlovi. Hence “Xvi¢-Iy =trvi(tIdvid= 10i. Now,
divide both Sides of the equation by di. we hove:

I+ ¢+ Zl'thQ)/:KI%'(’XTV@\n:O , YNnzo,
where 8=l&(,-—b=i| i8 jerol er Vi. Takfng n>»0, Since lWT@K\. the
the Summation term /s very Small and has to be on integer, and
thus it must be 0. Hence we get an equation for all n>o -

I+ - =0
This is impossible and leads to the dlesired contradiction. =

Cor. 8. Qi €1 unless Gz} or G,

Pf- G={it = T hos only | vertex. namely Vo=C. V= Vo®Vo =>
Qo=2 I’ (OobS bbe



Yo Q (the edge. considered leauing and entering,
connects Vo twice)

For (5. we have shown that its graph is Like:

Conuersebg. assume thet G #{1}. and there is @ multiple edge between
Vi and V:

RN V™ "
Vi

we hove Qij=0ji22
{ 2di = Qijdj + ZOik0k
200 = Qjidi + Z0jede
= 2di =20 + (Qi-20j+ ZCirde = Qjidi + T Ojede+ (Qj-210}j + Z QiOle
= 2(0j -0 + ZQikde =0
= 0k=0, Qk=0, Qj=2. i.e. no vertex cther than Vj connects to Vi,
By symmetry. this must also be true for Vj. Since we know that [ is
connecteg, I must then be:
«c—»

ond G =2/2 (the only group with only 2 conjugacy Clbsses).

° | ist qf MeKay - graphs
We have seen that the MecKay grph for Cn is

AV Vo

Vha
\

This groph is alled  An



The graph ﬁ)r Dan i8 actually the fol(owing with n+3 vertices:

The groph 18 called Dra. One can check the relation

Gl = £ df
fom: 4n= 4% -y 22
The exceptional groups:
|
2
I 2 3 2 l
A+ the groph Es
2
._.—aF A —e—o—o
| 2 2 |

St the groph Es

3

O— @ -0——0— 4 —@— L
2 4 6 5 4 3 2 !

As : the goph Eg

We shall prove, in the next ection, that these are the only possibilities :

Thm. 9. Any connected graph I with positive integl weights di assigned to



each vertex  satisfying:
. goddiy=|
(. 2di= 20
s one of the grophs Uisted aboue.

We shall also show how to match the groups with their cormesponding
McKay grophs in the next Section.



83 (C lossification

Our moin goal in this section is to dassifyy McKay graphs Cie. to prowe
thm 9 of §2).

® The associated inner product Space qp Q. groph.

Let T7 be a connected groph, whose uertices are 1@, ey, and between
any two vertices there is atf most one edge comecting them. To such a
' we ossociate a read vecter space IRY and an imer product on it, as

Jollows:
‘Qr’é @lrln lRel
ond the inner product on it. defined on the bass and extended bilineanly

2 if =
(e.epe { - if %] and (.} are connected
0 otherwise

Recoll our definition of the Mekay graphs Ao, Bn Ee.B7.E8 in thm.9,
together with the weights {dit assigned to each vertex. Remark that in
the above Clefinition we exclude the degenerate cases of MeKay grophs:

Or i
Eg.

T=o, thn RE-Re: and (e en=2
e

r-e ¢ . then R™=Rei@ Re:, with e. ex frming an arge of 3.
€2

2
3k
=~ e

Lemma I0. If [" is among tne Mckay grophs An (n22), Dra a2, B,
Es, Eg, the associated inner product (. ) on IR is positive sernn dg?mte
with a 1-dimensional null Space Spanned by the vector oo = Zd ei.



Pf: Indeed IRwo Llies inside the null space cf ¢,): Vi=t-.n.
(Wo. @) = (dier, e + Xjwi (djg), €
2di - Xi-j d;
=0
To show that () i8 positive Semi-definite . we assign an auiliony

orientation (0fbitranlyy to oll edges of T'. o as to keep track of tens
we ore summing ouer:

Now, ¥V w= i xiei, xielR. we have :

Xi ) 2
0< Xivj didJ' & il %"T) (Summing over all oriented edges)
= Sioy déqj (X7 ?-m?/d;dj + %71y
= Zinj (GHKT - 2% + g
= Ec-a_,'%ii«iz =220 Xiokj + Zj—»i%‘;L'Xiz

—_—

2 (ZJ i—j %JT.’XI'Z'i' z_j:j—»i%j,'")(iz) - 2Z£—>J' 'Xi'XJ'
=2 (ZJJ—t %’th) -2 Zi—j 7(i'XJ'
= 25 X" - 22’)(i’)(j ( Since X jij-i dj =2di)

= (W W,

with =" holdling ff  i/ai = /dj =2€R Jor all i jed..ny, ie w=Awo.

The result fol(ouos, o

Next we introduce Some Stancord dg@n'ruons fmm combinatorics

Def’ Consider a comnected gaph ' as above ¢ these graphs without muttiple

edges between any two uvertices are soyed to be simply (aced)

. T is called affine f we an assign weights di€IN 1o rts vertices st.
20i= 2j-idj, vi.

Rmk: Lemma 10 = all McKay graphs are affine. Furthermore. the resutt of



the lemma. actually holds for affine graphs. since in the proof’ we used
nothing but the relation 2di = Zijd;.

dv, I" is caled finitey Dynkin if' it's a proper subgaph of some affine
groph.

Rk By slightly modifying the proof of lemma [0, it's readily seen that in
this case the associated inner product is positive d@‘f‘nife on R™ (C. f the
proof of lemma 11 below).

E.g.

I B B

v, I7 s colled indefinite if' I contains  properly an offine gaph.
Rmk: Lemma. 11 below Shows that in this case the associated inner
product on IRF is inoefiinite.

Lemma 1. If T is indefinite, then the associated inner product on
RY is indefinite.
Pf: Let "G T be a subgraph which i8 affine. There are two possibilities:

-7 ~
-~ ) N P




m. I contains a vertex not in I'', say eiel”, eigl”
By def, 31dj} weights of I st 2dj=Sw-jerde Let wo=Zjerdjej,
and W'= Wo+ £¢j. Then:
(W) W) = (Wo, Wo) + 2&(Wo, i)+ 2€*
Note that (Wo.Woe)<o : cto distinguish different inner products J@r‘ I and T
we wnte ¢, ., (.,
(o, o) = (Wo, W) + 2 j.kG—R¥&T" (0] ], Arler)
= 0 - Xjky-ksrdjdr
<0
However (. €= X jer 0] (§.€1) = - Zjer'dj <0. Hence if we toke 0<€<«l,
28% < -2E(LWo,8) .
— (W', W" <0
. T g obtained from I" by removing more than one edges

—_———

PR ~
-’ J \\I-l
\

Then
(Weo. WO = (Wo, WA + X (j-h&l0lj0le (&), Er)
= = 2 (j-kal"djde

<0 m|

Since the inner products associated with affine graphs are dways positive
Seml'-deﬁnife, we Oleduce that:

Cor 12. Affine grophs do not contain each other property. =

o ( lassiﬁcaﬁ'on Qf affine grophs



(We summarize the deﬁmb‘ons we made into o toble:

Groph type Deﬁ'niﬁon Associated inner product on IRY
Affire r positive  semi-definite
Dynkin rer positive deﬁnite

Indefini’fe r2r indeﬁnife

Clam cthm. Q) The McKay grapns An (nz2), Bn,naay, Bs. Br, Bs
a complete ligt (f (Simply (aced!) @?I‘ne grophs.

Pf: e shall actually shaw that. [f T is neither Dynkin nor gffine. it
contoins properly one of the McKay graphs , and thus is indefinite.

. If T' contoins a cycle, then it contains An  property

(b, If ' contains a vertex of walency 24, it's either D, or it contoins

D properly.
- ><: Da

By iy and . we may assume that I" has no loops cie. it's a tree), and
oll vertices have ualency <3.

(). If I" contoins more than 2 ualency 3 vertices, choose a path between
them. Then these two uertices, the vertices connected to them, together with

the path connecting them form a On:

—————————————————————————

Then T is either D, or it contoins Dn propenly.

(i), If [" contains no alency 3 wertex, it is property contained i An ond is



then  Dynkin.

(v, It remains to discuss the ase when 7 contoins exoctly one vertex of
udency 3. Let p.g.r oenote the number of uertices on each “antenng’
of T. Without loss of gererality, assume that p<g<r , and dencte T
by Ipar.

BH lemma, 0, 173.3.3=§e, Th44= E;l, I’z.s,e=§g are aﬂine.
By remouing one of the weight one Uertices, we obtoin those Ipgr's that
are Dynkin:

5n+2 > [%ha2n( sz) E6 — .|.—'233(=E6)
= — Ihsa (2 Er) Es —> T%35 (=2 Eg)

Finlly. any other values of p.g.r other than those listed above will
cortoin one of Es. Es. Es properly:

Plajr Result

2|3 |27 |[pgr21236= Es

2| 4 |25] Thgr 21244 = =

2 | 25|25 | Thgr 2 [24a=F3 5
23| 23| 23| Ipgr 21333=Es




Rmks.
(). What e have shown I8 Stronger than thm. G, namely. we have partitioned

all simply- laced) grophs into 3 types:
Dynkin Affine _Indeﬁni’te

An An Al the

Do 1 Do other ones
Ee.Es. Es | Ee. Bz Es

McKay graphs are exactly the Same as (simply-lacedy affine gmphs
(id. Note that the types of [pgr is defermined by the wdue of s+g+7:

—“5- + —gl_— + Tpar
>\ Dynkin
= Affine
<l Indefinite

We shall see some interesting appliaation of this foct in the next ection.

® Matching groups with graphs
To fu((g establish McKay comespondence, we only need to maitch finite
subgroups (G € SU@ with its comesponding McKay (affiney graph T

For G=(n. we have shown in on example of 82 the assooiated Mekay
groph s An. Conversdy, An can only be assocated with Ca since all 1t
weights  being 1 implies that the associated growp has all its imep's I-dlim'l,
and thus must be an abelian group.

To determine the MeKoy  graph J‘c‘;r G=D3n, note that we hawe Shown
that Dan 2 G, Q rormaly ingdex 2 Subgroup which is abelian. (e
need the following -



Lemma 13. If a finite group G cortoing an index r subgrup H- wohich
s abelan, then any imep V of G has dimV<r
Pf: We know that the reqular rep CLGI of G contoing all imeps of
G, and
CLG1 = Inds (CIH)
= Ind ¢ @MGImLH) Vi Amhy
= Duerept) IndH(VM)
Now H abelion —=> dimVu=1 — Ind3 Vu has dimension [G:H1=r =>
Any irrep of G is then contoined in one of Ind¥ Vi The result follows
O
Apply the lemma to G= D 2H=Cn. We conclude that the imeps
qf Din hove dm<2. Since Dan iS nonabelion, it does have 2-dim{ irreps
( for instance the funoamental V). Hence the MecKay graph J%r Dan Con't
be E¢.Es or Es . since they contoin vertices of coeights 23, Then, o
identify  which Dr is associoted with Din, we con use the relation
Gl=Z di
0s we did befbne, to fnol the McKay graph Dra J%r Dan.

EBdlmVM

For Ak, Sk, A5, recll that »:Su—S0@) restricts to 2:1 Surjective
homomorphisms  of  them onto As. Se. As . Recall from basic rep. theory
that A«. Ss. As hove ireps of dim =3. Thus their McKay graphs must
be among Fe. B Bs, the only graphs hauing some weights di 23. Once
ogain we opply the formulo. IGI==di to findl the right graph for G

In summory. we have shown:
Thm 14 Ass;‘gning ench ju’nfte Subgroup cf SUa) its McKay graph giues

08 bIjECt(Oﬂ Qf Sets -
{Finite subgroups of Suey <« {offine grophs} .



* Application
Let G be a nonabelion finite subgroup of S, By our dassification of
all such G's . we know that z=-Ima € SU@ lies in G. Let Vi be an irrep
of G, then 2zeZ(G) => 2 acts as tIdvi on Vi, Since 2*=Drz. Since 2=
-Idv on the fundamentol V., i \jE Vi@V cie. j.i are connected in the
McKay groph of G), we have:

ff Z octs as Idvi on Vi, Z=(—Idv)®ldv:|vJ'= -Idv; ,

if 2 acts as -Idvi on Vi, 2= (-Tdw@Idvi)lyj= Idy;.
If we partition Irrep(G) into

Treep(G) = { Vi zlvi=1duit LI{ v} Zlvj=-Tdv;}

and mark them by different cdors on the McKoy groph, we have:

Any vertex on I’ has its neghbors with a different color.

| |
>.. SUE 2ot o I
l | | e .z octs o8 Id

D , n even D n odd
I

o2 3 2 I 2 3 4 3 2 | 2 4 65 4 3 2 1
Al S As

Note that. those Vi with 2 octing as Id are exactly those imeps of G
that descend to G/41.2} =Imv@). For instance. for Sk, we recower the
result that there are & ireps of Sa, of dimensions 1.1, 2,3.3 respectively.

The aboue remarks says that the MeKay graphs are bipartite, ie. it's Q
groph  whose uertices qan be partitioned into 2 classes such that the eoges
of the groph only Connects uertices ﬁbm different closses. A typical biportite



graph can be obtoined 08 shown below:
.j

Finally, recall that tensoring with a. I-dim'L representation of G induces an
automorphism  of  Irrep(@). This induces an automorphism of® the MKy

groph.

Eg Let's identifyy the uertices of Ee with specific representations of A
By the aboue dliscussion, we Rnow that the 1-dim'l imep's all come from
that of As. Since 1-diml representations of any group G forms o group
(GITG.GYY, this says that the natwel mep of abelian groups

Al LAY A1 — AalTAs, Adl
induces an isornorphism of the dual groups , and thus s an isomorphism
rtseg“ ( both = Ca)

Observe that the full gymmetry group acts transitively on all weight |
vertices  (this is true for oll Mckay graphs!y, 0 we can pick ony of
them to Stand for \b=C. Let Vi and V> be the other two 1-dim'l imeps
of AL, then V™ 2Vz, V™2 Ve, Let \V be the fundamental irep.

Then the central vertex U eatigfies V®*2\Vo®U. But we aso have
V& = NV SV

ond Sy acts trivially on AV, Heree Uz 8V, N

Now tensoring with Vi induces an order 3 automorphism of  Es



and it sends Vo—Vi. Thus we obtan:

Note also that tensoring with 1-diml rep's do not giue the jfull symmetries
of the MeKay groph here: Sym(Eoy=Ds but here we only obtain Ca. Note
that, houwever, these automorphisms permute transitively on weigt | vertices,
and the group has order exactly the number of weight | vertices. This i
true for all finite subgroups of  SU).

Eg / Berie For Si. the full symmetry group of Es s the same as
that  induced b5 Tensoring the non-trivial 1-dimensional irrep:

2
Vo V Vi

| 2 3 4 3 2 l
\®_VI/

Note that fiom the diogram we have, similr a8 for A4, that
(S4/LS4, Sa1)'= 1-diml RepcSa)
= 1-dim Rep(Si)
= (S/[&, 881
=> S4/[SK, Si12 S4llSeS1=Ca. Vi comes ﬁom the sign rep of Su.
(We leave it as an exercise to check the dliagram:

u
Vo Y SVeV, Vi

\ sV Vv
ond U i the 2-diml imep of Sa: SIS — &R,



84. Fun with Graphs
Previously we have partioned all (simply- laced) graphs into 3 closses:

Finite  Dynkin Aﬁ'ne Indeﬁnife
(38 I (21

As a corollary, we have:

Cor.15. There is a bijecton:

{Aﬁfme } TN { Finite Dynkin }

grophs grophs
I — I 21"~ a wepht | vertex
Note that remouing any weight | vertex gives the same resuit since the
group of automorphisms of I' acts tronsitively on them. 0

Rmk: We agree that for the Special coses:

Oh —
OO0 — oA

Rmk: The Dynkin graphs An. Dn, Ei. i=6.7.8 first occured when people were
trying to clossify simple Lie groups/ algebras. The history is much longer
than McKoy correspondence (~1980.

So for. what we hove estoblished is the following: Start with any finite
subgroup G < SUc2):

Mckay groph coffiner ——— Finite Dy
G cKay grap caﬂ{ne) inite Dgn in
MeKoy F?emouing ony

Correspondence weight | uertices



We shall ook at the nonobelion G's. But let's summarize what we Rnow:

G IGI H* Presentation of' G (H) Dynkin groph
Dn | 4n Din =b"= by’ (= 1) 2,20
Av | 24 Au a’= b= (oby (= 1) T233
S| 48 Sk a= b= (aby (=13 [236
As | 1o As 6= b= (b (=1 T2.35
%: H=P(@E): ¥Y: U — 803)
Obseruation:

® The numbers ¢p.q.m oaured twice : in the exponents of the group
presentation and in the Dynkin graphs I'pg.r.
° The relation F*TtT =1+ holds

(uestion:
® Is there any other oaurance of P.g." ?
® How do we explain the relation St R4 7?

o A Coxeter group H'
We shell introduce another group H' associated with H. Recall that when
class‘fging f'nite Subgroups qf S0@), we introduced them os rotodional
symmetries of requiar n-gons and polyhedrons, Then. G was introduiced
os the preimage G=v7(H) under ¥: SU@) — S0, ( Spin” symmetry!)
Houever, the regular n-gons and  polyhedrons also have  *reflectional
symmetries, coming from H <S03 0. Note that in dim 3,

Oy =S80 UL (-1)S0@) = SOB3YX Z/2.
(This is not true j&r even oimensions = dett-Iy= (-1¥R=1 = -1e SOk,
Thus we would expect H'=HxZ/2. However, this is not true in genenal.
let's look af them cose by coge.



. Regulor n-gon:
z

§b~qg) A:Z—-2 . id on ’X-S plane.

3

Note that in this cose,

€08k -8NGk O R o C®Or 8iNGr ©
Don = §inGk  CoStR o) , >(-sine. Cnér ©

o o | O -1/\ o o

eu=%‘-zn, osk<n, R: a]
reflection in x-y plane

Tha*ej%re D commutes with A=(' 1.)€0@\S0@) (A acts Triu:‘a(,gj on
tre n-gont) and in this ase it's DixZ/2.

(2),

Rot(cube) Sa Rot (Tosahedron) = As
Now it's easy to see that -1€ O@\SO@ actuolly preserves these regular
polyhedron.  Since -1€ Z(0@), H' in these ases are just

Sux 2 A6 x 22
respectively .
(3 A '
(A

2 3

Rot (tetrahediron) = Aa
Note that in this cose -Iss coesnt presene the tetrhedron. Instead. the
reflection A acts as ). Similaly we hove @3, 34 and thus in this
cose H'=Sa

As a rolloy. we see that |H'l=2IH|=IGl. (Qe odd these data into the
Sollowing toble:



G |IGl=1| H H' | Pesentation of H (@ | Dynkin groph
Dan | 4n Dan |DanxZh| 02=b"=(aby*(=1) %20
An | 24 As St | aibd= @by (=1) T2.3.3
S | 43 Se |SexZl| b= by’ (=1y [%36
AE | 1o As |AsxZh| 6=b= by (=1 T23.5

Next. we shall find nice presentations of these groups. To oo this, we
inscribe the regulr n-gons and regular polyhedrons into the unit sphere 8

3

Since H' preserves both the regulor polyhedrons and the unit sphere, H'
wil olso preserve the central projection images of the regular polyhedrons
onto the unit sphere S Let A be a fundamental domain of the H' action
on the polyhedron, then its image on S wuld be o spherical triangle
whose boundaries consist of ares of great circles

a central T Tr
__.\_)
projection

A and its sphencd image



Note the slight difference here: the Zi2 fictor octs trivially on the
regulor n-gon but non-tnuially on the sphere. Instead. we an think
of the n-gon has some thickness”, so that its upper and lower

foces are different.

Since H' octs faithfllly on the sphere. and transitively on all findamental
domains, it acts faithfully transtively on their spherical images . Thus
IH| = #{ sphencal fundamentol domains}

Now  using these sphenical fundamental domoins, it's easy to describe the

gerenators of H' in tems of the sphenical reflection about the sides
of a sphenial fundomental domain ctrionge)

A
X A A
W A Spherical reflection: y The spherical reflection
v obout the equa.tor\ 8\ de Qenerotors %Xy 2.

It's easy to see that. the composition of =y i8 the rotation about the

A direction by 2o
b rotation bg 0
A

ond thus (xyp"=1, where n=2mlex. For example . let’s work out the cube



A
domaing obout W Rk=2M/6="73
o vt 4 \/

Thus oxys® =1. Similarly, it con be checked that the B, v angles are

8= % 4= respectively, ond thus yzr*=1, @x=1.

In general, we con check that, the angles of a sphenical fundoamental
domain is TIp, TlQ, Tr respectively, where p.q.r are the numbers in
Ipar of the corresponding group H Cor G) -

Gz
T
8= i

Moreover , it follows that H' has the following presentotion for H' cpossibly
need to rengme X.y.2).
H'= dxy 2| x=y=2%1, ayP=yp=@x"=1>
It's also easy to see that the presentation of Hintems of a.b is also
related o %y, 2 by:
Q=%y. b=yz, by'=2x
The obove discussion then gues another occurence of (p.g.ry!

ulAa

. S v 4
'Geomerrizaﬁonqo ptagtT™ =+

Acwaug. the title is a sUgh’f misnomer, and what we will “geomemze” IS

| | | 4
PrTTE I 00

(IH1=1GI anyway!)
To exploin this we sholl use the Jollowing;



Thm 16. (Area. of a sphenical tniengle). A sphenical triangle on the unit
Sphere with angles o, B, » hos area  ol+B+» - T.

The proof of the thm will be deferred. But using this thm and the
previous disscussions about H' and the gphenical fundamerttal dlomoins,
we aan give a saﬁsfactory explanation qf ﬁrmu(a OF

Since H' acts simply tronsitively on the collection of all spheniaal
Jundomentol domoins triangles). they all hove the same area. Since

o(:.-,—t

‘ p
Q _K
Bz A

their angles are +.8.T respectively . their areas are all equal to
X, T, X
Ao =ptgtT - T
On the other handl, the sum o their total area is just the totol aren of
the gphere, we then hove:
Area(A) = 4T/ |H'|

Now (¢ follows by equating these two.

pr‘oqf cf Thm 16.

We first prove this formula in the degenerate case where one of the
angles is degenerate

ol

d.%

N

ol

AR

(

Observe that in this cse AreatA) is propotional to o, and when s=2,
A covers S° and Area(Ay=4r :>Anea=4-7r-%=2u.



Next, let A be any &pherical triangle and consider all the great circles
ﬁ)r‘ming its Sides:

Note thot any two great circles . eay, those cutling out », form @ situation
we conSidered aboue :

and thus the totol Shaded area is 2-2v =4¥. Similarly for o ad g.
Altogether, these shaded areos cover the whole unit Sphere. but with
A ond its mirror image about the center counted 3 times. Thus :
AQ+4B+4Y - 4. ArealA) = 4T
= Area(A)= o+B+Y - T,
as Cloimed.

* Affire ard indefinite coses

For the affine/ indefinite groaphs Thar (g +=1/<1), we may
consider the  same  presentztion of Coxeter groups:

H'2 ¢xy 2| K== 2=t oy =yprt=@n'=1>,

but things will be oifferent : H' won't be fhnite any more !
Eg [3as. XY, 2: reflections on IR*
about the Soes of a reguiar
triangle




Then &y 18 the rotation @“ R* obout A by 3. ond thus =1,
Smibrly  wyzr*= @xr’=1. Clearly this group is infinite, but it contans
a finite subgroup H=9{ oy, wa), @nf.

In general for affine Tpgr. the resut is similer and H' acts by affine
trnsformations on IR*, and that's why these graphs are colled affine.

In the indefinite cose. such o triange no longer Lives on S or R,
but rather on H*, the hyperbolic space, where the aren of a triongle
s glen by T- o-B-V.

g Y

The Coxeter group defined this woy will be very lorge ci-e. the number of
group elements grows  exponentially with respect to “length” of the group
elements , it's like a free group). These groups are called hyperbolic.



