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1 Introduction

1.1 Background Materials

In his articles [3][4][5][6] on the study of the quantum dynamical symmetries of a family of gener-
alized MICZ-Kepler problems, Meng discovered a family of quadratic relations that characterize
the representations occurring both in the gauge group representations and the representations
of the total Hilbert spaces of these dynamical systems. And these representational results were
summarized in the main theorems of Ref. [2].

To describe these quadratic relations, we first review some basic concepts about Clifford alge-
bras and spinor groups.

Let Rp,q be the Euclidean space equipped with the standard (p, q)-form [ηµν ], which under the
standard basis {xµ = (0, ...0, 1, 0, ...0)|1 occurs in the µ -th place, µ = 1, ..., p+ q} of Rp,q takes the
form:

diag(1, ..., 1
︸ ︷︷ ︸

p

,−1, ...,−1
︸ ︷︷ ︸

q

).
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Let Cp,q be the Clifford algebra over C subject to the relations:

xµxν + xνxµ = −2ηµν (1.1)

Denote Mµν
.
=

√
−1

4
{xµ, xν}, and we can check that these operators satisfy the following

commutator relations:

[Mαβ,Mγδ] = −
√
−1(ηβγMαδ − ηαγMβδ − ηβδMαγ + ηαδMβγ).

Thus it’s readily seen that we have a copy of the Lie algebra so(p, q) embedded in the Clifford
algebra, which is the algebra generated by the above Mµν ’s. Meanwhile there are also copies of
the corresponding groups Spin(p, q) inside the Clifford algebras.

In case p or q = 0, these spinor groups are known to be compact, and their irreducible unitary
representations are well known to be all finite dimensional and have a 1-1 correspondence with
the dominant weights.

In case both p and q are nonzero, these groups and their covering groups , denoted by G,
are known to be noncompact. And the non-trivial unitary representations of these groups are
well-known to be infinite dimensional. In these cases we use K to denote a maximal compact
subgroups of these non-compact groups. Harish-Chandra established a 1-1 correspondence be-
tween the irreducible unitary representations of G and the irreducible (g,K)-modules, where g

stands for the complexified Lie algebra of G. Moreover, recall that a representation of G is called
a highest weight module if the underlying (g,K)-module is a highest weight g-module. The uni-
tary highest weight (g,K)-modules are classified by Enright, Howe, Wallach [7] and Jakobsen
[8, 9] independently.

In the article [2], Meng proposed and studied the following quadratic relations in the univer-
sal enveloping algebras U(g):

∑

λ

(MµλM
λ
ν +Mλ

νMµλ) = c · ηµν .

Here the constant c depends only on the representations involved and can be calculated using
the quadratic Casimir element. Then Meng proved in the same article that:

Theorem 1.1. Let n > 0 be an integer.

(1) An irreducible unitary module of Spin(2n+1) satisfies the above quadratic relations ⇔ it’s
either the trivial representation or the fundamental spinor representation,i.e. the one with
highest weight | 1

2
, ..., 1

2
〉;

(2) An irreducible unitary module of Spin(2n) satisfies the above quadratic relations ⇔ it’s
a Young power of a fundamental spin representation, namely those with highest weight
||µ|, ..., |µ|, µ〉 where µ ∈ 1

2
Z.

(3) An irreducible unitary (so(2, 2n+1), SO(2)×SO(2n+1))-module satisfies the above quadratic
relations ⇔ it’s either the trivial one or the one with highest weight | − (n+µ− 1

2
), µ, ..., µ〉,

where µ = 0 or 1/2.

(4) An irreducible unitary (so(2, 2n), SO(2) × SO(2n))-module satisfies the above quadratic
relations ⇔ it’s either the trivial one or the one with highest weight | − (n+µ− 1

2
), µ, ..., µ〉,

where µ ∈ 1

2
Z

In that paper, Meng gave direct algebraic proofs for part (1) and (2) of the theorem. As for part
(3) and (4), he referred to his earlier articles on the MICZ-Kepler problems [5, 6], in which these
specific representations are explicitly realized as the Hilbert space of bound states of the gener-
alized hydrogen atoms with magnetic monopoles , whose dynamical symmetry are precisely the
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corresponding symmetry groups of those algebras in (3) and (4). Moreover, these quadratic rela-
tions are explicitly checked using these models by identifying the operators Mµν with a family of
differential operators which stand for certain conserved physical quantities.

Representation theoretically, Meng observed 1 that the representations occurred in part 3)
are precisely those Wallach representations in Case II (µ = 0) and Case III (µ = 1/2) of the
(g,K)- modules, as on page 128 of Ref. [7]. The representations in part 4) are precisely those
Wallach representations in Case II (µ = 0), Case III (µ > 0) and the mirror of Case III of the
(g,K)- modules, as on page 125 of the same article. In the Enright-Howe-Wallach classification
diagram for the unitary highest weight modules, there are two reduction points in Case II and one
reduction point in Case III. The non trivial representation always sits as the first reduction point,
and the trivial representations, which occurs in Case II only, always sits on the second reduction
point. In other words, the nontrivial representations in the above theorem are precisely those
boundary Wallach points in Case II, III and mirror of Case III.

1.2 Outline of this paper

In the winter of 2007, Meng suggested to the author that he may try to investigate the symplec-
tic case to see whether there is such similar quadratic relations that characterize the harmonic
oscillator representations. In trying to investigate this case, the author used direct algebraic
computations to reprove the above part (3) and (4) of Theorem 1.1 and also tried for the sym-
plectic cases. Yet there does not seem to be a direct translation of the corresponding quadratic
relations that can be used to characterize the harmonic oscillator representations. Instead, we
proposed a finer system of quadratic operators which formally satisfy the formal properties of a
(super)Riemannian curvature. We found out that the original quadratic relations can be in these
languages described as a system of formal “Einstein equations”. And so far the only interesting
result we obtained in the symplectic case is that the harmonic oscillator representations satisfy
the formal “homogeneous manifold”-like equation.

The paper is organized as follows.
In chapter 2, we give a direct algebraic proof of part (3) of Theorem 1.1. The strategy of proof

is to reduce the system of quadratic relations to proving only one of them, and then it is checked
computationally.

In chapter 3, similar algebraic proofs are carried out for part (4) of Theorem 1.1 and the above
mentioned “curvature-type” operators are introduced. We further point out that the original
quadratic relations are in this case a system of Einstein equations.

In chapter 4, we investigate the symplectic case and introduce a finer type of quadratic relation
that characterizes the harmonic oscillator representations. Furthermore, the “curvature type”
operators are introduced and we observe that the new quadratic relations are in this language a
“homogeneous manifold”-like condition. Lastly we point out that the Einstein equations in this
case are not sufficient to characterize the harmonic oscillator representations.

1.3 Acknowledgment

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Guowu Meng,
who is really a great mentor, a caring father as well as a close friend. His magnificent unified point
of view of mathematics and physics and his constant caring and encouragements will always be
an invaluable treasure to me, wherever and whenever I shall be.

Moreover, I would also like to thank all the professors from whose courses and numerous
private conversations I have benefited so much, particularly, Prof. Weiping Li, Prof. Conan
Leung, Prof. Jinsong Huang, Prof. Yongchang Zhu, Prof. Beifang Chen, Prof. Xiaowei Wang,
Prof. Jiaping Wang, Prof. Siye Wu, Prof. Ching Li Chai, Prof. Xi Chen and Prof. Shengli Tan.

Last but not least, I would like to thank my parents for their constant love, and all my friends
here at UST and at CUHK, from whom I learnt so much and enjoyed our valuable friendship. In

1c. f. [2] Remark 1.4
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particular I would like to thank Chan Kwok Wai, Tam Kai Fai, Yang Liang, and Wang Chongli for
sharing your wisdoms with me. Dear all, without all your support, I couldn’t have proceeded.

2 The Noncompact Odd Dimensional Case: so(2, 2n+ 1)

In this chapter, we will give the proof of the main theorem in the odd dimensional case so(2, 2n+
1). One side of the proof is done by Meng in his previous paper [2], and is included here for the
sake of completeness. The converse is proved as follows: we try to reduce the verification of all
(2n + 3) × (2n + 3) identities to one particular identity by a symmetry argument, and then we
verify that the operator in this equation kills a generating set of vectors in these specific modules.

2.1 Review of Some General Facts

To prove the main theorem in this case, we first review some general facts about the special
orthogonal Lie algebra so(2, 2n+ 1). Here we adopt the usual convention of physicists, as can be
found in the standard textbook [1].

Recall that the root space of so(2, 2n + 1) is Rn+1, with the standard basis {e0, ..., en}. The
roots of so(2, 2n+ 1) are {±ei ± ej|0 ≤ i < j ≤ n} and {±ek|0 ≤ k ≤ n}. As usual, we choose the
positive roots to be {ei ± ej|0 ≤ i < j ≤ n}, together with {ek|0 ≤ k ≤ n}. The associated simple
roots are then {e0 − e1, ..., en−1 − en, en}.

A Cartan basis can be chosen as follows (c. f. [2]):






H0 = M−1,0

Hi = −M2i−1,2i, 1 ≤ i ≤ n
Eηej+ζek = 1

2
(M2j−1,2k−1 +

√
−1ηMsj,2k−1 +

√
−1ζM2j−1,2k − ηζM2j,2k),

0 ≤ j < k ≤ n
Eηej = 1√

2
(M2j−1,2n+1 +

√
−1ηM2j,2n+1)

The transition from the Clifford algebra interpretation to the root vectors is given by:







M2j−1,2k−1 = 1

2
(Eej+ek + Eej−ek + E−ej+ek + E−ej−ek)

M2j,2k−1 = 1

2
√
−1

(Eej+ek + Eej−ek − E−ej+ek − E−ej−ek)

M2j−1,2k = 1

2
√
−1

(Eej+ek − Eej−ek + E−ej+ek − E−ej−ek)

M2j,2k = 1

2
(−Eej+ek + Eej−ek + E−ej+ek − E−ej−ek),

where 0 ≤ j < k ≤ n; also
{

M2j−1,2n+1 = 1√
2
(Eej + E−ej )

M2j,2n+1 = 1√
−2

(Eej − E−ej ),

where 0 ≤ j ≤ n; finally, we have:
{

M−1,0 = H0

M2i−1,2i = −Hi,

where 1 ≤ i ≤ n.

2.2 Proof of One Side

We start with one side of the proof, which is already done by Meng in his paper [2]. We include
it here for the sake of completeness.

Observe that in a unitary highest weight (so(2, 2n + 1), SO(2) × SO(2n + 1))-module, the
operators Mij ’s act as unitary operators. From definitions, we see that each Hj acts as a hermitian
operator, while the root vectors satisfy E†

α = E−α. Thus in a unitary highest weight module with
highest weight |Ω〉 = |λ0, λ1, ..., λn〉,we have the following:
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Lemma 2.1. The highest weight satisfies:

−λ0 ≥ λ1 ≥ ... ≥ λn.

Moreover, {λi|(i = 1...n)} are all half integers and their differences {(λ1 − λ2), ..., (λn−1 − λn)}
are all integers.

Proof. For later uses also, we note that the Cartan basis {Hi, Eα} satisfies the following commu-
tator relations:







[Ee0+ei , E−e0−ei ] = −H0 −Hi [Ee0−ei , E−e0+ei ] = −H0 +Hi

[Eei+ej , E−ei−ej ] = Hi +Hj [Eei−ej , E−ei+ej ] = Hi −Hj

[Eηei , Eζej ] = −
√
−1Eηei+ζej [Eei , E−ei ] = Hi

[Ee0 , E−e0 ] = −H0, [Ee0+ek , E−ek ] = iEe0

[Ee0+ek , E−ek+el ] =
√
−1Ee0+el [Eek+el , E−el+ej ] =

√
−1Eek+ej

By evaluating the equation, [Ee0+ei , E−e0−ei ] = −H0 −Hi, on the highest weight vector |Ω〉, we
obtain:

0 ≤ ||E−e0−ei |Ω〉||2 = 〈Ω|[Ee0+ei , E−e0−ei ]|Ω〉 = 〈Ω|H0 −Hi|Ω〉 = −λ0 − λi

Similarly by evaluating the highest weight vector at [Eei , E−ei ] = Hi(i ≥ 1) , [Ee0 , E−e0 ] = −H0

and [Eei−ej , E−ei+ej ] = Hi −Hj we obtain λi ≥ 0(i ≥ 1), −λ0 ≥ 0 and λi − λj ≥ 0.
Furthermore, the vectors {Eei , E−ei , Hi}, i = 1, ..., n constituting a copy of su(2) shows that

the λi’s are half integers. Similarly {E±ei±ej , E∓ei∓ej , 1/2(±Hi ∓ Hj)} forming copies of su(2)
shows that the differences λi − λj are integers.

Now we prove:

Proposition 2.2. An irreducible unitary highest weight (so(2, 2n+1), SO(2)×SO(2n+1))-module
satisfying the quadratic relations can only be those with highest weights | − (n+ µ− 1

2
), µ, ..., µ〉,

where µ = 0 or µ = 1

2
, or it is the trivial representation.

Proof. The quadratic relations in the special cases µ = ν = −1, ...2j − 1, ...2n+ 1 read:







〈Ω| −∑

k M−1,kM
k
−1|Ω〉 = const.

〈Ω|
∑

k M2j−1,kM
k
2j−1|Ω〉 = const. (j = 1, ..., n)

〈Ω|∑k M2n+1,kM
k
2n+1|Ω〉 = const.

Plugging in the above transformation relations, and noticing that since we are evaluating on the
highest weight vector, we may well omit those terms occurring in the computation of the form
E−α · ∗+ ∗ · Eβ , where α and β are positive roots. Then from the above equations, we obtain:

c = 〈Ω| −
∑

k M−1,kM
k
,−1|Ω〉

= 〈Ω|M2
−1,0 −

∑

1≤k≤n M
2
−1,2k−1

−∑

1≤k≤n M2
−1,2k −M2

−1,2n+1|Ω〉
= 〈Ω|H2

0 − (1
4

∑

k(Ee0+ek + Ee0−ek + E−e0+ek + E−e0−ek)
2

− 1

4

∑

k(Ee0+ek − Ee0−ek + E−e0+ek − E−e0−ek)
2 + 1

2
(Ee0 + E−e0 )

2)|Ω〉
= 〈Ω|H2

0 − 1

2
[Ee0 , E−e0 ]− 1

2

∑

k({Ee0+ek , Ee0−ek}+ {Ee0+ek , E−e0−ek}
+{Ee0−ek , E−e0+ek}+ {Ee0−ek , E−e0−ek})|Ω〉

= 〈Ω|H2
0 + 1

2
H0 − 1

2

∑

k([Ee0+ek , E−e0−ek ] + [Ee0−ek , E−e0+ek ])|Ω〉
= 〈Ω|H2

0 + 1

2
H0 − 1

2

∑

k(−H0 −Hk)− 1

2

∑

k(−H0 +Hk)|Ω〉
= λ0 + (n+ 1

2
)λ0

Next, for j = 1, ..., n, we have:
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c = 〈Ω| −M2
2j−1,−1 −M2

2j−1,0 +
∑

k≥1
M2

2j−1,k|Ω〉
= 〈Ω| − 1

4
(Eej+e0 + Eej−e0 + E−ej+e0 + E−ej−e0)

2 + 1

4
(Eej+e0 − Eej−e0 + E−ej+e0

−E−ej−e0)
2 +

∑

1≤k≤n,k 6=j
1

4
((Eej+ek + Eej−ek + E−ej+ek + E−ej−ek)

2 − (Eej+ek

−Eej−ek + E−ej+ek − E−ej−ek)
2) +H2

j + 1

2
(Eej + E−ej )|Ω〉

= 〈Ω| − 1

2
({Eej+e0 , Eej−e0}+ {Eej+e0 , E−ej−e0}+ {Eej−e0 , E−ej+e0}

+{E−ej+e0 , E−ej−e0}) + 1

2

∑

k 6=j({Eej+ek , Eej−ek}+ {Eej+ek , E−ej−ek}
{Eej−ek , E−ej+ek}+ {E−ej+ek , E−ej−ek}) +H2

j + 1

2
(E2

ej
+ E2

−ej
+ {Eej , E−ej})|Ω〉

= 〈Ω|H2
j + 1

2
Hj +

∑

k>j([Eej−ek , E−ej+ek ]) +
∑

k<j([E−ej+ek , Eej−ek ])

− 1

2
([Eej+e0 , Eej−e0 ] + [Eej+e0 , E−ej−e0 ] + [E−ej+e0 , Eej−e0 ] + [E−ej+e0 , E−ej−e0 ])|Ω〉

= 〈Ω|H2
j + 1

2
Hj +

1

2

∑

k 6=j(Hj +Hk) +
1

2

∑

k>j(Hj −Hk)
1

2

∑

k<j(Hk −Hj)− 1

2
(−H0 −Hj −H0 +Hj)|Ω〉

= 〈Ω|H2
j + 1

2
Hj +

1

2

∑

k>j 2Hj +
1

2

∑

k<j 2Hk +H0|Ω〉
= 〈Ω|H2

j + (n− j + 1

2
)Hj +

∑

k<j Hk +H0|Ω〉
= λ2

j + (n− j + 1

2
)λj + (λ1 + ...+ λj−1) + λ0

Thirdly,

c = 〈Ω| −M2
2n+1,−1 −M2

2n+1,0 +
∑

k≥1
M2

2n+1,k|Ω〉
= 〈Ω| − 1

2
(Ee0 + E−e0)

2 + 1

2
(Ee0 − E−e0 )

2 + 1

2

∑

k≥1
((Eej + E−ej )

2 − (Eej − E−ej )
2)|Ω〉

= 〈Ω| − {Ee0 , E−e0}+
∑

k≥1
{Eej , E−ej}|Ω〉

= 〈Ω| − [Ee0 , E−e0 ] +
∑

k≥1
[Eej , E−ej ]|Ω〉

= 〈Ω|H0 +
∑

j≥1
Hj |Ω〉

= λ0 + λ1 + ...+ λn

Now, from the second groups of equations, we deduce by subtracting the neighboring ones:

λ2
j+1 − λ2

j + (n− j +
1

2
)(λj+1 − λj)− (λj+1 − λj) = (λj+1 + λj + n− j − 1

2
)(λj+1 − λj) = 0

Moreover since λj ≥ 0 and the index j runs from 1 to n − 1, (λj+1 + λj + n − j − 1

2
) > 0, it

follows that:
λj+1 = λj = λ, (j = 1, ..., n− 1).

Plugging this into any of the second groups of equations and the third equation,we obtain:

λ2 + (n− 1

2
)λ+ λ0 = c = λ0 + nλ,

which in turn implies:

λ2 =
1

2
λ.

By equating the first equation with any of the second group of equations, say, the first, we obtain:

λ2
0 + (n+

1

2
)λ0 = c = λ2 + (n− 1

2
)λ + λ0

Hence:

(λ− λ0)(λ + λ0 + n− 1

2
) = 0.

Thus either λ = λ0 or λ0 = −(λ + n − 1

2
). Together with lemma 2.1, we deduce that the only

possibilities are as follows:






λ0 = 0 λ = 0 and |Ω〉 = |0, 0, ..., 0〉
λ0 = −n+ 1

2
λ = 0 and |Ω〉 = | − n+ 1

2
, 0, ..., 0〉

λ0 = −n λ = 1

2
and |Ω〉 = | − n, 1

2
, ..., 1

2
〉.
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2.3 Proof of The Other Side

To prove that the other side holds, we need the following observations to reduce the verification
of the (2n+ 3)× (2n+ 3) quadratic relations

∑

λ

{Mµλ,M
λ
ν} = cηµν

to the vanishing of the “off-diagonal” cases in these specific representations. Moreover by an-
other simple symmetry argument we are further reduced to prove for only one special “off-
diagonal” case.

Lemma 2.3. The quadratic representations are satisfied in those irreducible unitary highest weight
(g,K)-modules if and only if the following identity holds in these representations:

∑

λ

{M−1λ,M
λ
0} = 0.

Proof. One side is clear.
For the converse, we note that the “diagonal operators” {Mµλ,M

λ
µ} − cηµµ kill the highest

weight vector by similar computations as those in Proposition 2.2. Thus these operators will
vanish identically if

U
.
= [Mαβ ,

∑

λ

{Mµλ,M
λ
µ} − cηµµ] ≡ 0,

where α, β ∈ {−1, 0, ..., 2n + 1} in these representations, since all the other weight vectors are
created from repeated actions of Mαβ . But we have:

U = [Mαβ ,
∑

λ{Mµλ,M
λ
µ} − cηµµ]

= [Mαβ ,
∑

λ(η
λδ{Mµλ,Mλµ})− cηµµ]

=
∑

λ(η
λδ{Mµλ, [Mαβ,Mδµ]}+ ηλδ{[Mαβ,Mµλ],Mδµ})

=
∑

λ(η
λδ{Mµλ,−

√
−1(ηβδMαµ − ηαδMβµ − ηβµMαδ + ηαµMβδ)}

+ηλδ{−
√
−1(ηβµMαλ − ηαµMβλ − ηβλMαµ + ηαλMβµ),Mδµ})

=
∑

λ(−
√
−1{Mµλ, (δβλMαµ − δλαMβµ − ηβµη

λδMαδ + ηαµη
λδMβδ)}

−
√
−1{(ηλδηβµMαµ − ηλδηαµMβµ − δβδMαµ + δαδMβµ),Mδµ})

= −∑

λ

√
−1(ηβµ{Mµλ,M

λ
α} − ηαµ{Mµλ,M

λ
β}+ ηβµ{Mαλ,M

λ
µ} − ηαµ{Mβλ,M

λ
µ})

= −2
√
−1

∑

λ ηβµ{Mµλ,M
λ
α}+ 2

√
−1

∑

λ ηαµ{Mµλ,M
λ
β}

=







2
√
−1ηαα

∑

λ{Mαλ,M
λ
β} (α 6= β α = µ)

−2
√
−1ηββ

∑

λ{Mβλ,M
λ
α} (α 6= β β = µ)

0 (α, β, µ all different).

Thus we see that if all the “off-diagonal” operators vanish, the “diagonal” ones will be iden-
tically 0 in these modules.

Furthermore, consider the three identities below:






A :
∑

λ{M−1λ,M
λ
0} = 0

B :
∑

λ{M0λ,M
λ
1} = 0

C :
∑

λ{M1λ,M
λ
2} = 0.

Once the above identities A, B, C hold in the modules, the other “off-diagonal” cases will be
true. This is because they just differ by an inner automorphism of the group Spin(2, 2n+ 1).

Finally, identities B and C can be deduced once identity A holds, this is because:

0 = [M1,−1,
∑

λ{M−1λ,M
λ
0}]

=
∑

λ({[M1,−1,M−1λ],M
λ
0}+ {M−1λ, [M1,−1,M

λ
0]})

=
∑

λ(
√
−1{η−1,−1M1λ − η1,−1M−1λ − η−1,λM1,−1 + η−1,λM−1,−1, η

λδMδ0}
−
√
−1{ηλδM−1,λ, η−1,δM10 − η1,δM−10 − η−1,0M1,δ + η1,0M−1,δ})

=
√
−1(

∑

λ{M1λ,M
λ
0} − {M1,−1,M−1,0} − {M−1,1,M−1,0})

=
√
−1

∑

λ{M1λ,M
λ
0}.
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Similarly, from identity B, we can deduce identity C:

0 = [M0,2,
∑

λ{M0λ,M
λ
1}]

=
∑

λ({[M0,2,M0λ],M
λ
1}+ {M0λ, [M0,2,M

λ
1]})

=
∑

λ(
√
−1{η2,0M0λ − η0,0M2λ − η2,λM0,01 + η01,λM2,0, η

λδMδ1}
−
√
−1{ηλδM0,λ, η2,δM01 − η0,δM21 − η2,1M0,δ + η0,1M2,δ})

= −
√
−1(

∑

λ{M2λ,M
λ
1} − {M2,0,M0,1} − {M0,2,M0,1})

=
√
−1

∑

λ{M2λ,M
λ
1}.

This finishes the proof of our lemma.

Now we finish the proof of proposition 2.2 by showing that the above identity holds in our
specific modules:

Lemma 2.4.
∑

λ{M−1λ,M
λ
0} = 0 in these modules.

Proof.

L.H.S. =
∑

k≥1

{M−1k,M0k} =
2√
−1

∑

k≥1

(Ee0−ekEe0+ek − E−e0−ekE−e0+ek) +
1√
−1

(E2
e0 − E2

−e0)

Let O = 2
∑

k≥1
E−e0−ekE−e0+ek + E2

−e0
, then L.H.S. = 1√

−1
(O† − O). Hence it suffices to

check that the operator O vanishes identically in these modules. For this purpose it suffices to
check that, i), it kills the highest weight vector |Ω〉, and ii), it commutes with all (simple) negative
roots, since all other weight vectors, which constitute a basis of our (g,K)-module, are obtained
by succinct actions of the (simple) negative roots on the highest weight vector |Ω〉.

Firstly, we check that it kills the highest weight vector. To do this we will show that ||O|Ω〉|| =
0 in these modules:

〈Ω|O†O|Ω〉 = 〈Ω|
∑

k,l

(4Ee0+ekEe0−ekE−e0+elE−e0−el)

︸ ︷︷ ︸

X

+
∑

k

2Ee0+ekEe0−ekE
2
−e0

︸ ︷︷ ︸

Y

+
∑

l

2E2
e0E−e0+elE−e0−el

︸ ︷︷ ︸

Y †

+E2
e0E

2
−e0

︸ ︷︷ ︸

Z

|Ω〉

Now we compute termwise:

〈Ω|X |Ω〉 = 〈Ω|∑k,l(4Ee0+ekEe0−ekE−e0+elE−e0−el)|Ω〉

= 4〈Ω|
n∑

k=1

Ee0+ekEe0−ekE−e0+ekE−e0−ek

︸ ︷︷ ︸

X1

|Ω〉

+4〈Ω|
∑

k 6=l

Ee0+ekEe0−ekE−e0+elE−e0−el

︸ ︷︷ ︸

X2

|Ω〉

For the first term, 〈Ω|X1|Ω〉 and 〈Ω|X2|Ω〉, we have respectively:

〈Ω|X1|Ω〉 = 〈Ω|∑n
k=1

(Ee0+ekEe0−ekE−e0+ekE−e0−ek)|Ω〉
= 〈Ω|

∑n
k=1

(Ee0+ekE−e0−ekEe0−ekE−e0−ek + Ee0+ek [Ee0−ek , E−e0+ek ]E−e0−ek))|Ω〉
= 〈Ω|∑n

k=1
([Ee0+ekE−e0−ek ][Ee0−ekE−e0−ek ] + Ee0+ek(−H0 +Hk)E−e0−ek))|Ω〉

= 〈Ω|∑n
k=1

(−H0 +Hk)[Ee0+ek , E−e0−ek ]|Ω〉
= 〈Ω|∑n

k=1
(−H0 +Hk)(−H0 −Hk)|Ω〉

=
∑n

k=1
(λ2

0 − λ2
k)
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〈Ω|X2|Ω〉 = 〈Ω|∑k 6=l(Ee0+ekE−e0+elEe0−ekE−e0−el + Ee0+ek [Ee0−ek , E−e0+el ]E−e0+el)|Ω〉
= 〈Ω|∑k 6=l([Ee0+ek , E−e0+el ][Ee0−ek , E−e0−el ] + Ee0+ek

√
−1E−ek+elE−e0+el)|Ω〉

= 〈Ω|∑k 6=l(
√
−1Eek+el

√
−1E−ek−el +

√
−1[Ee0+ek , E−ek+el ]E−e0−el

+
√
−1E−ek+elEe0+ekE−e0−el)|Ω〉

= 〈Ω|∑k 6=l(−Eek+elE−ek−el − Ee0+elE−e0−el +
√
−1E−ek+el [Ee0+ek , E−e0−el ])|Ω〉

= 〈Ω|∑k 6=l(−[Eek+elE−ek−el ]− [Ee0+elE−e0−el ]− E−ek+elEek−el)|Ω〉
= 〈Ω|∑k 6=l(−(Hk +Hl)− (−H0 −Hl))−

∑

k>l[E−ek+el , Eek−el ]|Ω〉
= 〈Ω|∑k 6=l(H0 −Hk) +

∑

k>l(Hk −Hl)|Ω〉
=

∑

k 6=l(λ0 − λk) +
∑

k>l(λk − λl)

The remaining terms are similarly computed:

〈Ω|Y |Ω〉 = 〈Ω|
∑

k(Ee0+ekEe0−ekE
2
−e0 )|Ω〉

= 〈Ω|∑k(Ee0+ekE−e0Ee0−ekE−e0 + Ee0+ek [Ee0−ek , E−e0 ]E−e0)|Ω〉
= 〈Ω|

∑

k([Ee0+ek , E−e0 ][Ee0−ek , E−e0 ] +
√
−1Ee0+ekE−ekE−e0)|Ω〉

= 〈Ω|∑k(−EekE−ek +
√
−1[Ee0+ek , E−ek ]E−e0)|Ω〉

= 〈Ω|∑k(−[Eek , E−ek ]− Ee0 , E−e0)|Ω〉
= 〈Ω|

∑

k(−Hk − [Ee0 , E−e0 ])|Ω〉
= 〈Ω|∑k(−Hk −H0)|Ω〉
=

∑

k(λ0 − λk)

〈Ω|Z|Ω〉 = 〈Ω|E2
e0
E2

−e0
|Ω〉

= 〈Ω|(Ee0E−e0Ee0E−e0 + Ee0 [Ee0 , E−e0 ]E−e0)|Ω〉
= 〈Ω|([Ee0 , E−e0 ][Ee0 , E−e0 ] + Ee0(−H0)E−e0 )|Ω〉
= 〈Ω|(H2

0 + Ee0E−e0 −H0[Ee0E−e0 ])|Ω〉
= 〈Ω|(H2

0 + [Ee0 , E−e0 ] +H2
0 )|Ω〉

= 〈Ω|(2H2
0 −H0)|Ω〉

= λ2
0 − λ0

In sum, we deduce that:

〈Ω|O†O|Ω〉 = 4
∑n

k=1
(λ2

0 − λk) + 4
∑

k 6=l(λk − λl) + 4
∑

k>l(λk − λl)

+4
∑

k(λ0 − λk) + λ2
0 − λ0

Now, we substitute the λi’s by those occurring in the highest weight vectors |Ω〉 = |− (n+µ−
1

2
), µ, ...µ〉, where µ = 0 or 1

2
, and obtain after a simple calculation that 〈Ω|O†O|Ω〉 = (2µ−1)µ = 0.

Secondly, we verify that O commutes with all (simple) negative roots:
For E−e0+e1 we have:

[O,E−e0+e1 ] = [2
∑

k≥1
E−e0−ekE−e0+ek + E2

−e0
, E−e0+e1 ]

=
∑

k≥1
({[E−e0−ek , E−e0+e1 ], E−e0+ek}+ {E−e0−ek , [E−e0+ek , E−e0+e1 ]})

+E−e0 [E−e0 , E−e0+e1 ] + [E−e0 , E−e0+e1 ]E−e0

= 0.

For E−ek+ek+1 where 1 ≤ k ≤ n− 1, we have:

[O,E−ek+ek+1 ] = [2
∑

l≥1
E−e0−elE−e0+el + E2

−e0
, E−ek+ek+1 ]

= {[E−e0−ek , E−ek+ek+1 ], E−e0+ek}+ {E−e0−ek , [E−e0+ek , E−ek+ek+1 ]}
{[E−e0−ek+1 , E−ek+ek+1 ], E−e0+ek+1}+ {E−e0−ek+1 , [E−ek+ek+1 , E−ek+ek+1 ]}

= 0 + {E−e0−ek ,
√
−1E−e0+ek+1}+ {−

√
−1E−e0−ek , E−e0+ek+1}+ 0

= 0.
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Finally for E−en , we have:

[O,E−en ] = [2
∑

k≥1
E−e0−ekE−e0+ek + E2

−e0 , E−en ]

= {E−e0−en , [E−e0+en , E−en ]}+ {E−e0 , [E−e0 , E−en ]}
= {E−e0−en ,

√
−1E−e0}+ {E−e0 ,−

√
−1E−e0−en}

= 0

This finishes the proof of the lemma.

In summary of the previous lemmas we conclude with the following proposition, which to-
gether with Proposition 2.2 finishes the non-compact odd dimensional part of our main theorem
1.1:

Proposition 2.5. The irreducible unitary highest weight (so(2, 2n + 1), SO(2) × SO(2n + 1))-
modules with highest weights | − (n + µ − 1

2
), µ, ..., µ〉, for µ = 0 and µ = 1

2
and the trivial

representation satisfy the quadratic relations:

∑

λ

{Mµλ,M
λ
ν} = cηµν .

✷

3 The Noncompact Even Dimensional Case: so(2, 2n); An Ein-

stein Equation

In this chapter, we prove the quadratic relations for the even dimensional cases. Since the meth-
ods are completely similar as that of the previous chapter, we just indicate the necessary changes
which need to be made of the previous chapter. Next, we make some observations on a formal
type of “Einstein equations” that our specific modules satisfy.

Again we start by reviewing some general facts about the special orthogonal lie algebra
so(2, 2n). Here we also adopt the usual convention of physicists, as can be found in the stan-
dard textbook. [1]

Recall that the root space of so(2, 2n) is Rn+1, with the standard basis {e0, ..., en}. The roots of
so(2, 2n) are {±ei ± ej|0 ≤ i < j ≤ n}. As usual, we choose the positive roots to be ei ± ej . The
associated simple roots are {e0 − e1, ..., en−1 − en, en−1 + en}.

A Cartan basis can be chosen as follows(C. f. [2]):







H0 = M−1,0

Hi = −M2i−1,2i, 1 ≤ i ≤ n
Eηej+ζek = 1

2
(M2j−1,2k−1 +

√
−1ηMsj,2k−1 +

√
−1ζM2j−1,2k − ηζM2j,2k),

0 ≤ j < k ≤ n

The transition from the Clifford algebra interpretation to the root vectors is given by:







M2j−1,2k−1 = 1

2
(Eej+ek + Eej−ek + E−ej+ek + E−ej−ek)

M2j,2k−1 = 1

2
√
−1

(Eej+ek + Eej−ek − E−ej+ek − E−ej−ek)

M2j−1,2k = 1

2
√
−1

(Eej+ek − Eej−ek + E−ej+ek − E−ej−ek)

M2j,2k = 1

2
(−Eej+ek + Eej−ek + E−ej+ek − E−ej−ek),

where 0 ≤ j < k ≤ n; and we have:

{
M−1,0 = H0

M2i−1,2i = −Hi,

where 1 ≤ i ≤ n.
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3.1 Proof of One Side

Again we start with one side of the proof, which is done by Meng in his paper [2].
Note that the Cartan basis {Hi, Eα} satisfies the following commutator relations:







[Ee0+ei , E−e0−ei ] = −H0 −Hi [Ee0−ei , E−e0+ei ] = −H0 +Hi

[Eei+ej , E−ei−ej ] = Hi +Hj [Eei−ej , E−ei+ej ] = Hi −Hj

[Ee0+ek , E−ek+el ] =
√
−1Ee0+el [Eek+el , E−el+ej ] =

√
−1Eek+ej

By evaluating the equation, [Ee0+ei , E−e0−ei ] = −H0 −Hi, on the highest weight vector |Ω〉,
we obtain

0 ≤ ||E−e0−ei |Ω〉||2 = 〈Ω|[Ee0+ei , E−e0−ei ]|Ω〉 = 〈Ω|H0 −Hi|Ω〉 = −λ0 − λi

Similarly by evaluating the highest weight vector at the equations [Eei∓ej , E−ei±ej ] = Hi ∓ Hj

we obtain λi ≥ 0, (n−1 ≥ i ≥ 1), −λ0 ≥ 0 and λi±λj ≥ 0 for i > j. Furthermore, the differences
and sums are all integers by similar arguments as in Lemma 2.1. We summarize this discussion
as:

Lemma 3.1. The highest weight satisfies

−λ0 ≥ λ1 ≥ ... ≥ |λn|.

Moreover, {λi|(i = 1, ..., n)} are all half integers and their differences (λ1 − λ2), ..., (λn−1 − λn)
are all integers. ✷

Now we prove:

Proposition 3.2. An irreducible unitary highest weight (so(2, 2n), SO(2)×SO(2n))-module satis-
fying the quadratic relation could only be those with highest weights |−(n+|µ|−1), |µ|, ..., |µ|, µ〉,
for µ ∈ 1

2
Z or the trivial representation.

Proof. Again we use the fact that the quadratic relations in the special cases µ = ν = −1, ...2j −
1, ...2n− 1 gives

{

〈Ω| −M−1,kM
k
−1|Ω〉 = const.

〈Ω|M2j−1,kM
k
2j−1|Ω〉 = const. (j = 1, ..., n)

Plugging in the above transformation relations, and noticing that since we are evaluating on the
highest weight vector, we may well omit those terms occurring in the computation of the form
E−α · ∗+ ∗ · Eβ , where α and β are positive roots. Thus for the above equations, we obtain:

c = 〈Ω| −M−1,kM
k
−1|Ω〉

= 〈Ω|M2
−1,0 −

∑

1≤k≤n M
2
−1,2k−1

−∑

1≤k≤n M
2
−1,2k|Ω〉

= 〈Ω|H2
0 − (1

4

∑

k(Ee0+ek + Ee0−ek + E−e0+ek + E−e0−ek)
2

− 1

4

∑

k(Ee0+ek − Ee0−ek + E−e0+ek − E−e0−ek)
2)|Ω〉

= 〈Ω|H2
0 − 1

2
({Ee0+ek , Ee0−ek}+ {Ee0+ek , E−e0−ek}

+{Ee0−ek , E−e0+ek}+ {Ee0−ek , E−e0−ek})|Ω〉
= 〈Ω|H2

0 − 1

2
([Ee0+ek , E−e0−ek ] + [Ee0−ek , E−e0+ek ])|Ω〉

= 〈Ω|H2
0 − 1

2

∑

k(−H0 −Hk)− 1

2

∑

k(−H0 +Hk)|Ω〉
= λ0 + nλ0

Next, for j = 1, ..., n, we have:
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c = 〈Ω| −M2
2j−1,−1 −M2

2j−1,0 +
∑

k≥1
M2

2j−1,k|Ω〉
= 〈Ω| − 1

4
(Eej+e0 + Eej−e0 + E−ej+e0 + E−ej−e0)

2 + 1

4
(Eej+e0 − Eej−e0 + E−ej+e0

−E−ej−e0)
2 +

∑

1≤k≤n,k 6=j
1

4
((Eej+ek + Eej−ek + E−ej+ek + E−ej−ek)

2 − (Eej+ek

−Eej−ek + E−ej+ek − E−ej−ek)
2) +H2

j |Ω〉
= 〈Ω| − 1

2
({Eej+e0 , Eej−e0}+ {Eej+e0 , E−ej−e0}+ {Eej−e0 , E−ej+e0}

+{E−ej+e0 , E−ej−e0}) + 1

2

∑

k 6=j({Eej+ek , Eej−ek}+ {Eej+ek , E−ej−ek}
{Eej−ek , E−ej+ek}+ {E−ej+ek , E−ej−ek}) +H2

j |Ω〉
= 〈Ω|H2

j + 1

2
Hj +

∑

k>j([Eej−ek , E−ej+ek ]) +
∑

k<j([E−ej+ek , Eej−ek ])

− 1

2
([Eej+e0 , Eej−e0 ] + [Eej+e0 , E−ej−e0 ] + [E−ej+e0 , Eej−e0 ] + [E−ej+e0 , E−ej−e0 ])|Ω〉

= 〈Ω|H2
j + 1

2

∑

k 6=j(Hj +Hk) +
1

2

∑

k>j(Hj −Hk)
1

2

∑

k<j(Hk −Hj)− 1

2
(−H0 −Hj −H0 +Hj)|Ω〉

= 〈Ω|H2
j + 1

2

∑

k>j 2Hj +
1

2

∑

k<j 2Hk +H0|Ω〉
= 〈Ω|H2

j + (n− j)Hj +
∑

k<j Hk +H0|Ω〉
= λ2

j + (n− j)λj + (λ1 + ...+ λj−1) + λ0

Now, from the second groups of equations, we deduce by subtracting the neighboring ones:

λ2
j+1 − λ2

j + (n− j)(λj+1 − λj)− (λj+1 − λj) = (λj+1 + λj + n− j − 1)(λj+1 − λj) = 0

Moreover since λj+1 +λj ≥ 0 and the index j runs from 1 to n− 2, (λj+1 +λj +n− j− 1) > 0,
it follows that:

λj+1 = λj = λ, (j = 1, ..., n− 2),

and for j = n− 1:
(λn − λn−1)(λn + λn−1) = 0,

or that’s to say |λn| = λn−1. It follows that the highest weight must be of the form |Ω〉 =
|λ0, λ, ..., λ,±λ〉

Plugging this weight into the first and any of the second groups of equations, say, the first
one,we obtain:

λ2
0 + nλ0 = c = λ0 + (n− 1)λ+ λ2

which in turn implies:
(λ0 − λ)(n− 1 + λ0 + λ) = 0.

Thus either λ = λ0 or λ0 = −(λ+n−1). Together with lemma 2.1, we deduce the only possibilities
are: 





λ0 = 0 λ = 0 and |Ω〉 = |0, 0, ..., 0〉
λ0 = −n− |µ|+ 1 λ = |µ| and |Ω〉 = | − n− |µ|+ 1, |µ|, ..., |µ|, µ〉

where µ is a half integer.

3.2 Proof of The Other Side

Once again to prove that the other side holds, we turn to Lemma 2.3 for help to reduce the
verification of the (2n+ 2)× (2n+ 2) quadratic relations:

∑

λ

{Mµλ,M
λ
ν} = cηµν

to the verification of only one special off-diagonal case:

∑

λ

{M−1λ,M
λ
0} = 0.
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Remark 3.3. One more remark is needed here, so that we may reduce by half the number of
representations we need to check for the above identity. In fact, we only need to consider the case
when the highest weight has µ ≥ 0, this is readily seen since the negative cases can be conjugated
to this case by an inner automorphism of the group Pin(2, 2n).

And now we prove the corresponding vanishing result in this case for this particular identity,

Lemma 3.4. In these modules, the following equation holds
∑

λ

{M−1λ,M
λ
0} = 0.

Proof.

L.H.S. =
∑

k≥1

{M−1k,M0k} =
2√
−1

∑

k≥1

(Ee0−ekEe0+ek − E−e0−ekE−e0+ek)

Let O = 2
∑

k≥1
E−e0−ekE−e0+ek , then L.H.S. = 1√

−1
(O† −O) Hence it suffices to check that

the operator O vanishes identically in these modules. For this purpose it suffices to check that, i),
it kills the highest weight vector |Ω〉, and ii), it commutes with all (simple) negative roots, since
all other eigenvectors are obtained by succinct actions of the (simple) negative roots on |Ω〉.

Firstly, we check that it kills the highest weight vector. To do this we will show that ||O|Ω〉|| =
0 in these modules:

〈Ω|O†O|Ω〉 = 〈Ω|∑k,l(4Ee0+ekEe0−ekE−e0+elE−e0−el)|Ω〉
= 〈Ω|∑k,l(4Ee0+ekEe0−ekE−e0+elE−e0−el)|Ω〉
= 4〈Ω|∑n

k=1
Ee0+ekEe0−ekE−e0+ekE−e0−ek |Ω〉

+4〈Ω|
∑

k 6=l Ee0+ekEe0−ekE−e0+elE−e0−el |Ω〉
=

∑n
k=1

(λ2
0 − λ2

k) +
∑

k 6=l(λ0 − λk) +
∑

k>l(λk − λl)

In case of the highest weight, |Ω〉 = | − n − µ + 1, µ, ..., , µ〉, the above number is readily
computed to be (notice that we use the above remark 3.3 so that everything in the last term
cancels out, of course it’s not necessary to have assumed this and direct computations apply.):

〈Ω|O†O|Ω〉 = n(n+ µ− 1)2 − nµ2 + n(n− 1)(−n− 2µ+ 1)
= n(n− 1)(n+ 2µ− 1− n− 2µ+ 1)
= 0

Secondly, we verify that O commutes with all (simple) negative roots:
For E−e0+e1 we have:

[O,E−e0+e1 ] = [2
∑

k≥1
E−e0−ekE−e0+ek , E−e0+e1 ]

=
∑

k≥1
{[E−e0−ek , E−e0+e1 ], E−e0+ek}+

∑

k≥1
{E−e0−ek , [E−e0+ek , E−e0+e1 ]}

= 0.

For E−ek+ek+1 where 1 ≤ k ≤ n− 1, we have:

[O,E−ek+ek+1 ] = [2
∑

l≥1
E−e0−elE−e0+el , E−ek+ek+1 ]

= {[E−e0−ek , E−ek+ek+1 ], E−e0+ek}+ {E−e0−ek , [E−e0+ek , E−ek+ek+1 ]}
{[E−e0−ek+1 , E−ek+ek+1 ], E−e0+ek+1}+ {E−e0−ek+1 , [E−ek+ek+1 , E−ek+ek+1 ]}

= 0 + {E−e0−ek ,
√
−1E−e0+ek+1}+ {−

√
−1E−e0−ek , E−e0+ek+1}+ 0

= 0.

Finally for E−en−1−en , we have:

[O,E−en−1−en ] = [2
∑

k≥1
E−e0−ekE−e0+ek , E−en−1−en ]

= 2{E−e0−en−1 , [E−e0+en−1 , E−en−1−en ]}+ 2{E−e0−en , [E−e0+en , E−en−1−en ]}
= 2{E−e0−en−1 ,

√
−1E−e0−en}+ 2{E−e0−en ,−

√
−1E−e0−en−1}

= 0

This finishes the proof of the lemma.
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In summary of the previous remarks and lemmas we conclude with the following proposition,
which together with Proposition 2.2 finishes the non-compact even dimensional part of our main
Theorem 1.1:

Proposition 3.5. The irreducible unitary highest weight (so(2, 2n), SO(2) × SO(2n))-modules
with highest weights | − (n + |µ| − 1), |µ|, ..., |µ|, µ〉, for µ ∈ 1

2
Z or the trivial representations

satisfy the quadratic relations:
∑

λ

{Mµλ,M
λ
ν} = cηµν .

3.3 An Einstein Equation

Definition 3.6. Define a family of operators as follows:

Rabcd
.
= 2{Mab,Mcd} − {Mac,Mdb} − {Mbc,Mad}

Lemma 3.7. The family of operators Rabcd satisfy the following “curvature-type” properties:

(1) Rabcd = −Rabdc = −Rbacd = Rcdab.

(2) Rabcd +Racdb +Radbc = 0.

Proof. (1). The first identities follow directly from definitions.
(2). Straightforward calculations, just noticing that Mab = −Mba:

Rabcd +Racdb +Radbc = 2{Mab,Mcd} − {Mac,Mdb} − {Mbc,Mad}
+2{Mad,Mbc} − {Mab,Mcd} − {Mdb,Mac}
+2{Mac,Mdb} − {Mad,Mbc} − {Mcd,Mab}

= 0.

Using this family of operators, our main results Propostions 2.2, 2.5, 3.2, 3.5 can be summa-
rized in the following form:

Proposition 3.8. (1) . An irreducible unitary highest weight (so(2, 2n+1), SO(2)×SO(2n+1))-
module satisfies the Einstein equation ηbcRabcd = cηad if and only if it’s either the trivial
representation or the one with highest weight

| − (n+ µ− 1

2
), µ, ..., µ〉,

for µ = 0 and µ = 1

2
.

(2) An irreducible unitary highest weight (so(2, 2n), SO(2)×SO(2n))-module satisfies the Ein-
stein equation ηbcRabcd = cηad if and only if it’s either the trivial representation or the one
with highest weight

| − (n+ |µ| − 1), |µ|, ..., |µ|, µ〉,
for µ ∈ 1

2
Z.

Proof. We only need to show that, this ”Einstein equation” is in fact equivalent to the original
quadratic relations, but:

ηbcRabcd = ηbc(2{Mab,Mcd}+ {Mac,Mbd} − {Mbc,Mad})
= 2{Mab,M

b
d}+ {Mcd, {Mac,M

c
d}}

= 3{Mab,M
b
d}.

Thus everything follows from what we have done in the above mentioned propositions.
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Remark 3.9. It is interesting to notice that, using this formal language, we have the following
results:

1). For compact Lie groups Spin(2n) and Spin(2n+ 1), a finite dimensional representation is
the spinor representation if and only if the module satisfies the formal “homogeneous curvature”
equation in the universal enveloping algebra:

Rabcd = c(δadδbc − δacδbd)

2). In the noncompact case, an irreducible unitary (so(2, 2n+1), SO(2)×SO(2n+1))-module
or (so(2, 2n), SO(2)× SO(2n))-module satisfies the above “homogeneous curvature” type equa-
tion if and only if it is the trivial representation.

4 The Symplectic Case

In this chapter we shall focus our attention on the symplectic cases. Similar as in the previous
section, we may introduce a formal curvature type operator in the universal enveloping algebra.
Only the two fundamental harmonic oscillator representations are proved to satisfy the “homoge-
neous curvature” equation. However there is a continuous infinite family of irreducible unitary
highest weight (g,K)-modules satisfying the Einstein equation, or equivalently, satisfying the
similar quadratic relations in the symplectic case.

4.1 Review of Some General Facts

In this section we briefly review the Heisenberg algebra construction and use it to define and
review some basic facts on the symplectic Lie algebra.

Recall that a symplectic vector space is a Euclidean vector space RN endowed with a non-
degenerate antisymmetric bilinear form. It follows that the dimension N must be even, and the
symplectic form maybe written as ω =

∑

ij ωijdx
idxj . The Heisenberg algebra is generated by

xi
.
= ωijx

j subject to the commutator relations [xi, xj ] =
√
−1ωij . Define Mij

.
= 1

2
{xi, xj}, and

it’s readily checked that these operators generate a copy of symplectic Lie algebra sp(2n). Also
recall that the symplectic algebra has the root space Rn,with the standard basis {e1, ...en}. The
roots of sp(2n) are {±ei ± ej |1 ≤ i 6= j ≤ n} and {±2ek|1 ≤ k ≤ n}. As usual, we choose the
positive roots to be {ei ± ej|1 ≤ i < j ≤ n}, together with {ek|1 ≤ k ≤ n}. The associated simple
roots are {e1 − e2, ..., en−1 − en, 2en}.

Now assume without loss of generality that ω2i−1,2i = −ω2i,2i−1 = 1 and all other ωij = 0.
We may choose the following Cartan basis for sp(2n):







Hi = − 1

2
(M2i−1,2i−1 +M2i,2i) 1 ≤ i ≤ n

Eηej+ζek = 1

2
(M2j−1,2k−1 +

√
−1ηMsj,2k−1 +

√
−1ζM2j−1,2k − ηζM2j,2k),

0 ≤ j 6= k ≤ n
E2ηej = 1

2
√
2
(M2j−1,2j−1 +

√
−12ηM2j−1,2j −M2j,2j), 0 ≤ j ≤ n

The transition from the Cartan basis to the Heisenberg algebra interpretation is given by:







M2j−1,2k−1 = 1

2
(Eej+ek + E−ej+ek + Eej−ek + E−ej−ek)

M2j,2k−1 = 1

2
√
−1

(Eej+ek − E−ej+ek − Eej−ek − E−ej−ek)

M2j,2k = − 1

2
(−Eej+ek − E−ej+ek − Eej−ek − E−ej−ek),

where 0 ≤ j < k ≤ n; also







M2j−1,2j = −
√

−1

2
(E2ej − E−2ej )

M2j−1,2j−1 = 1√
2
(E2ej + E−2ej )−Hj

M2j,2j = − 1√
2
(E2ej + E−2ej )−Hj
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.
Using the commutator relations:







[Eej−ek , E−ej+ek ] = Hj −Hk

[Eej+ek , E−ej−ek ] = −Hj −Hk

[E2ej , E−2ej ] = −2Hj,

we may conclude as we did for Lemma 2.1 that a unitary highest weight module with highest
weight |Ω〉 = |λ1, ..., λn〉 must satisfy 0 ≥ λ1 ≥ ... ≥ λn.

Finally, recall that the fundamental harmonic oscillator representations of the Lie algebra
sp(2n,R) are the two irreducible components of the representation of the Heisenberg algebra gen-
erated by the so called ”raising” and ”lowering” operators from the vacuum state |− 1

2
,− 1

2
, ...,− 1

2
〉.

Here the raising operator ak and the lowering operator a†k are given by x2j−1 = 1√
2
(aj + a†j) and

x2j =
1√
−2

(aj − a†j). And the Cartan basis may be defined more compactly as:







Hi = −(a†iai +
1

2
) 1 ≤ i ≤ n

E−ej+ek = a†jak, 0 ≤ j 6= k ≤ n

E−ej−ek = a†ja
†
k, 0 ≤ j 6= k ≤ n

E−2ej = 1√
2
a†ja

†
j , 0 ≤ j ≤ n

4.2 A Quadratic Relation

Our main result in this chapter is the following:

Proposition 4.1. An irreducible highest weight module satisfies the quadratic relation

{Mab,Mcd} − {Mac,Mbd} = ωcbωad +
1

2
ωabωcd −

1

2
ωacωbd

if and only if it is one of the two fundamental harmonic oscillator representation, i.e. those with
highest weight | − 1

2
,− 1

2
, ...,− 1

2
〉 or | − 1

2
,− 1

2
, ...,− 3

2
〉.

We break the proof of proposition into the following lemmas.

Lemma 4.2. The fundamental harmonic oscillator representations satisfy the above mentioned
quadratic relation.

Proof. The proof is a straightforward computation in the Heisenberg algebra, utilizing only the
commutator relations.

For the converse:

Lemma 4.3. An irreducible highest weight module satisfying the above quadratic relations could
only be those with highest weights | − 1

2
,− 1

2
, ...,− 1

2
〉 or | − 1

2
,− 1

2
, ...,− 3

2
〉.

Proof. First of all we notice that it suffices to check for n = 2 case. Since any other (a, b, c, d) than
(1, 2, 3, 4) can be conjugated to it by an inner automorphism of the group Sp(2n,R).

Thus we may well assume that the symplectic Lie algebra is sp(4,R), and the quadratic rela-
tions for (a, b, c, d) = (1, 3, 1, 4), (a, b, c, d) = (3, 1, 3, 2) read:

{

1 : {M13,M14} − {M11,M34} = 0,

2 : {M31,M32} − {M33,M12} = 0.

We will evaluate these identities on the highest weight vector |Ω〉 = |λ, µ〉.
For equation 1, we have:
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{M13,M14} − {M11,M34}|Ω〉

= { 1

2
(Ee1+e2 + E−e1+e2 + Ee1−e2 + E−e1−e2),

1√
−2

(Ee1+e2 + E−e1+e2 − Ee1−e2 − E−e1−e2)}
−{ 1√

2
(E2e1 + E−2e1)−H1,−

√
−1

2
(E2e2 + E−2e2})|Ω〉

=
√
−1

2
(−E2

−e1+e2 |Ω〉
︸ ︷︷ ︸

A

+E2
−e1−e2 |Ω〉

︸ ︷︷ ︸

B

+
√
2(2λ+ 1)E−2e2 |Ω〉

︸ ︷︷ ︸

C

− 2E−2e1E−2e2 |Ω〉)
︸ ︷︷ ︸

D

And similarly as in chapter 2, we compute readily: A†A = 2(λ−µ)2−2(λ−µ), A†B = A†C =
A†D = B†C = C†D = 0, B†B = 2(λ+ µ)2 − 2(λ+ µ), B†D = −4(2λ+ 1)2µ, and D†D = 16µλ.

From this we conclude that equation 1 gives rise to the equation

4(λ2 + µ2 − λ+ 3µ− 4λ2µ) = 0

For equation 2, we do the same thing: {M13,M14} − {M11,M34}|Ω〉

= { 1

2
(Ee1+e2 + E−e1+e2 + Ee1−e2 + E−e1−e2),

1√
−2

(Ee1+e2 − E−e1+e2 + Ee1−e2 − E−e1−e2)}
−{

√
−1

2
(E2e1 − E−2e1),

√
1

2
(E2e2 + E−2e2 −H2)}|Ω〉

=
√
−1

2
(E2

−e1+e2 |Ω〉
︸ ︷︷ ︸

A

+2E−e1−e2E−e1+e2 |Ω〉
︸ ︷︷ ︸

B

+
√
2(2µ+ 1)E−2e1 |Ω〉

︸ ︷︷ ︸

C

+E2
−e1−e2 |Ω〉)

︸ ︷︷ ︸

D

− 2E−2e1E−2e2 |Ω〉)
︸ ︷︷ ︸

E

Also we compute easily that A†A = 2(λ − µ)2 − 2(λ − µ), B†B = 4µ2 − 4λ2, B†C = 4(λ −
µ)(1 + 2µ), C†C = 2(1 + 2µ)2(−2λ), D†D = 2(λ + µ)2 − 2(λ + µ), D†E = 8µ, E†E = 16µλ, and
A†B = A†C = A†D = A†E = B†D = B†E = C†D = C†E. It follows equation 2 implies the
equation 8µ(1 + 2λ)(1 − µ) = 0.

Now from these two equations:

{

4(λ2 + µ2 − λ+ 3µ− 4λ2µ) = 0

8µ(1 + 2λ)(1 − µ) = 0,

we obtain the following possibilities, with the aide of assumption 0 ≥ λ ≥ µ:







µ = 0, λ = 0

λ = − 1

2
, µ = − 1

2

λ = − 1

2
, µ = − 3

2

4.3 Formal Curvature Type Operators

Now similar as what we did for the special Lie orthogonal algebra cases, we introduce the follow-
ing curvature type quantity and reformulate our main result of this section in this new language.

Definition 4.4. Define a family of operators Rabcd as follows:

Rabcd = 2{Mab,Mcd} − {Mac,Mdb} − {Mbc,Mad}.

Lemma 4.5. The family of operators satisfy the following (super-)curvature type properties:

(1) Rabcd = Rbacd = Rabdc = Rcdab,

(2) Rabcd +Racdb +Radbc = 0.
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(3) ωbcRabcd = 3{Mab,M
b
d}

Proof. (1). These follows from definition.
(2). Similar calculations as we did in, and here we have Mab = Mba:

Rabcd +Racdb +Radbc = 2{Mab,Mcd} − {Mac,Mdb} − {Mbc,Mad}
+2{Mad,Mbc} − {Mab,Mcd} − {Mdb,Mac}
+2{Mac,Mdb} − {Mad,Mbc} − {Mcd,Mab}

= 0.

(3). Notice that the last term is symmetric in bc, and ωbc is antisymmetric in bc:

ωbcRabcd = 2ωbc{Mab,Mcd} − ωbc{Mab,Mcd} − ωbc{Mab,Mcd}
= 3{Mab,M

b
d}

In terms of these formal “curvature-type” quantities, we reformulate Lemma 4.3 as follows:

Proposition 4.6. An irreducible highest weight module satisfies the quadratic relation:

Rabcd = c(ωadωcb − ωacωbd)

if and only if it’s one of the two fundamental harmonic oscillator representation, i.e. those with
highest weight | − 1

2
,− 1

2
, ...,− 1

2
〉 or | − 1

2
,− 1

2
, ...,− 3

2
〉.

Proof. “⇐”: In the harmonic oscillator representations, we have:

{Mab,Mcd} − {Mac,Mbd} = ωcbωad +
1

2
ωabωcd −

1

2
ωacωbd

and

{Mba,Mcd} − {Mbc,Mad} = ωcaωbd +
1

2
ωbaωcd −

1

2
ωbcωad

Summing these up, and noticing that Mab = Mba, we obtain:

Rabcd =
3

2
(ωadωcb − ωacωbd).

“⇒”: In the special cases, (a, b, c, d) = (1, 1, 3, 4) and (a, b, c, d) = (1, 2, 3, 3), the above equa-
tions specializes to the two identities we used in the proof of Lemma 4.3, thus the proof goes
through as in that case.

Remark 4.7. By (3) of Lemma 4.5, we may also propose the problem of what the unitary highest
weight modules are which satisfy the similar Einstein equations {Mac,M

c
b} = c · ωab. Yet after

a lengthy calculation similar as those done in Chapter 2, we found out that there is a continuous
infinite family of modules satisfying this formal Einstein equation, and in this sense, there does
not seem to be a clear duality between the symplectic and orthogonal cases.
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