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81 Quivers. Dynkin - Diagrams - ond Positive Roats
Let I be a finite oriented graph. ucI'y the set of uertices in I". and

el the set of edges in T Let k be af»«ed ground field

Def. The path algebm. KIT1 i the lk-vector space with o bosis
sponred by all the oriented poths in I” tincluding uertices os  length
0 paths), with the product structwe gven by conaontenation gf paths.

In the cbove example, T fos as a bosis the paths of:

length 0: (h, @, 3y, 4, (5. (6)
length 1 a3y, (34), 54, (56), (32)
lengfn 20 (134), (32)

with - products:

M- =03y, U-(H=0, UMM =0., UNB4) =034, B4 U3H=0, elC.

It J%([ows fnom dgf that k(1 is osSociative. It's finite dimensional  iff
I" doesn't contoin any oriented  1- cycles.

The next two properties are clear

1y, ¢y =S¢y, 8o that uertices (i), ieud, ore idempoters.

@. 1=%ieur () is the unt of the algebm « it being the left / right
unit is equialent to Soying that oy path in I" storts/ends at some
vertex.

Thus KkIT'J is awoys o unital associative algebra.



Examples
m. Let ' be:

Is eosy to check that kC['1= {nxn upper trianguior matnicest, identifying
the path ¢.in-jy with the matnx Eij (i<

{ )

kT3 = ki3, the polynomiol rng on o,

2. The Jordan quiver:

x B

KIT1=lkéo, B>, the free Kk-algebm genenated by 2 words.

Recdll that if G is a finte growp, the group algebra CLGI i8 Semisimple
S0 that ony @GI-module is projective. Such rings, or equiua(ent(g their
axtegory  of modlules. are said to be of homological dimension O

The next se to look at would then be those nings c3f homological
dimension 1. i.e. those rings whose modules always admit a2 -term
resolution by projective modules. Equiualently. this is equivalent to Saying
that all submodules of projective mocules are themselves projective. This
last property s also known as being hereditayy. Important examples arise
in number theory / commutative algebra, namely the nng of integers O
of some number field F/ smooth affine curves over k.

Thm 1. KITT hos homological dimension 1.
Pf: We shall prove that. any kII'J-mooule admits a 2-term projective



resolution. UJe ﬁf‘st Show that the ring K12 A itseff admits a 2-temm
projective A®wA - bimodule resolution.

Since 1= X ieur thh and () =S8jjcr, Air/ A are l@%/ rgft projective A-
modules , v ieuT. Thus we have a projective (A,A) - bimodule A @k A

for each vertex ieud. Consider
@ieucr') A ®u<(i)A — A

XY — i XY
where Xi/Yi stonds for a path that StrtS/ends at the uertex i

The map is Clearly sunjective, and we clom that the kemel is given by the
projective  bimodule:
Do:imjeem Ady ®|k<j)A — D v At QA
2a Xi® Y = Z X ®Yj - Xi®nY;

//\. G
ACJ)®CJ)A /\(l)@(nA
ord in foct. we obtain the desmed bimoolule mso(uﬂon
0 — Duiinsjeem At ®k (HA —’@16U<P)A(l)®lk(t)A —’A — O
The injectiuity on the [.hs. and thedi=o0 is dear. It suffices to check
that Rerdo < imd..
Let Zekerdo. Note that it syffees to prove for 2 Consisting of paths
whose image under do lie on a fixed path, sy d.is- ), ie.
do:2Z =3 =i Qu (i RY®R-]) — X Oali~R-j)=0
We prove by induction on the elergth" j=01. The length o case is tuidl.
Consider
Z+dnlai(i)®(f+l."'.j) = Tk Orli=RI®CR, )y + Qilliv) @i+, |) - QiY@ frl.e+. )y



= Ok (1. RY @ (R,~))
= (L) (Sl kG~ RI®R )
28 1. sy Ol S adin Ok~ RYBCR-)))
=0 .
= ot gt Qr tin RO (R, ])) =0,
since ¢.iny i3 a non-2ero divisor on kicin-, j). By induction
zh:iﬂ aﬂ(llﬂ."'.h)@(h,-".‘j): aiz'
= 2= 0hamed |+ itz
= A Qi By + (Li+)-Z),
ond this finishes the induction step.
Once this resolution is estoblished, we obtain resdution of A-modules
Jor free. We simply tensor it up with M:
0 — Duiimr eem Ati) ®k CJ')M—OI‘—’@ieucr')A(i)&kCi)M_d—o’M_—’ 0
the sequence remains exact since it (without the M term) Computes:
Tora(A. M) = { M- =0
O (#0.
Moreouer, the sequence gives rige for ony left A-module M o 2-step
projective  resolution. The theorem ﬁ)llooos. O

Quiver Representrtions
Oriented grophs are dlso colled quivers, and by & Quiver representation
we mean o module ower the path algebra kII'1. In whot follows we
shall study right KII'I-modules, so that the pictures ogree with the
orientation cgf I’ Suoifching to (gft moolules just means reversing all the
arows in the pictures.
Let M be a ight) kII'I-module. Since 1= Tieud (. we have
M= Qieury M) (a8 k-vector Spaces).
Then o:i—j € eI gues nise to lineor mops:
M-ty —*— M)



M) —— M= M)
In this wny. we set up a I-1 correspondence:
Collections of clotum: k-vector
Spaces Mi | ieud™y ond linear
maps Mi< M. iy eed.

{Quuer Representations} «——

\ p M

4 \\ M/ T Ms

My—>—

/ a  Ik[CI-module

i

2

Ma

Before going on. we make some general remarks about the Krull-Schmidtt
property of Quiver representations.

let A be a nng and M an A-moole. M is soid to Sotigfy the
Krull- Schmictt  property  if
.M con be decomposed into a direct sum of  indecomposables :

Mz & M
. Up to pemutotion, the decomposition is  unique.

It's a vey general fact that any finte length A-module ¢ <=
modules Satigfijing both the asending chain condition and  the Olesending
chain condition) Sotisfies the Krull-Schmidt property. Thus for any
k-olgebra A the abelian category of finite dimensional A -moolules is
Krull- Schmidt .

Historically, Kummer jb[se(g ossumed  the Krull- Schmict  property  for
O - modules , where F is a number field, and ~proved” Fermot's
lost theorem.

Thus to understand the category of quiver representation, we need
to first understondl the collection of  indlecomposables.

Examples :



). Consider:
o g

O

A represertotion of this quiver iS equivalent to an n-dimensional vector
space together with 2 endomorphisms on it. Thus the isomonphism closses
of such representations are pammetrized by:
( Matcn.lkyx Maten.lky )/ GLen.ky,

which roughly has dimension n* Inside this set o genenc isomorphism
closs s indecomposable , and the clossifiation of indecomposables i
hard.

Such pheomenon occws for most quivers, and they are said to be
of wild representation type.

(i. The Jordan Quiver
O

Assume that k=k. Its a clossionl theorem of linear algebra that in this
cose for eoch nzo, the set of indecomposobles of cdimension n s
parometrized by the Jordbn cononical Jorm of o

{[55) | ree]

Thus in this ase. J%r‘ each ﬁxed dimension we have o I-porameter
Jomily of indecomposgbles, and s more tangible than the previous case.
Such quivers are said to be of tame representation type.

(i, Type A Quiver:

r— 00— —@--—-——- 0

In this cose, one can check that the indecomposables are all of the

Jorm:




-r°
f
1
I

Observe that in this case the indecomposables ore in  bijection with
the set of positive roots of the underlying Dynkin dliagram . i.e.
f&-g = cirmrofn . si=€i-€n}. In this cose, we say that I" is
of finite representation type , ond for this type of quivers, we have
the following:

Thm. 2. kII'1 has fl‘nfte representation type iff the underlying graph
of I' is ﬁni’re Dynkin. Moreover, in this situation, the inclecomposobles
ore in biection with the positive roots of the associated Moot system.

We shall gue o sketch of the proof. Before that we need to
introduce Some  basic  nations.

Def. Let M be a finite dimensional KIT'I-module. The dimension

vector of M s dqqned to be:
. A Bludl
M £ ( dimMci)) ieum € Zso

The dimension uector is Cleorly additive on  Rep(I™y, and gerves the
usual purpose of  possing

dim : Rep(I”) — Ko(Rep(I™)
cor rather Db(er(l_')) — Ko(Rep(I") = Dsi: simple rep's ZLSiT).

D@C‘. For each vertex ie uc™. we define the Skyscroper madule Si
to be the collection of olatum:

{Mi’:‘”(. Mj=o0. j=i

oll mops between Mi, Mj are 0.



In cose I" hos no oriented cydes, one eosly checks that the Simples
in Rep are exactly the SRyscraper modules Supported at each
vertex ieud. In- particulas, Ko(Rep(™) = Gieun ZLSi1 foms o lattice
that IS independent of the orientations on I", but only Cepends
on the undeying groph of I'. We put on the lttice the usual metnic
that IS associated with any graph occuring in- Lie theory:

<[S;],[SJ-]>2{ 2 =
- #{lines connecting i andt j} (=
ossuming that I has no orented cycles. (If T" does have oriented

cycles . we should look ot the category of nilpotent representations of
kII"1 instecd .)

Def. (Source ond sink). A vertex ieu is called a souce if all
the armows comecting it point off of it it's colled a snk if
all the amows connecting it point inwardg insteod:

/k Q  Source /K O 8Nk

Sketch of procf’ of thm. 2

From now on we ossume that all quivers inudued are smply-laced.

The man idea of the progf is to Lift" the eyl group action on
the lofice Ko(Rep™) to functors acting on  Rep(I). More precisely,
we Sholl construct, for a source or sk i of T, onother quiver



I with the some underying graph, and functors 4. 47, so that
they lift the reflection  Si: KolRep™ = Ko(Repd™ -

Rep) == Rep(I")

JM ldﬂ

Ko(RepD <_—__S—'_S——> KolRep(I™)

Then the theorem will follow from a clever use of some elementory
property of Coxeter groups.

Def. ( Gobriel / Bemstein- Ge@fand— Ponomareu r'qqecﬁon ﬁnct’ors)

(. Let ( be a sink in a quuer ', M a kiI'I-module. We d@‘?ne
(") to be the quiver obtainedl from I be reversing all the armows
connected to i :

L 47 L
—_—
T 4"

For any KII'I- module. we define a new KI<iI"1- module di(M) S
follows:
Let v be the map (@i M()) ALV Define
RN { ker?? T
May . j#i

ond the maps to be the ones in M if the edges are digioint fromi. and
to be the composite:

kery <— (@i M) — Mgy
if the edge connects i.

. Let { be a source in @ quver ', M a KII'T-module. e dg?ne
U7(I") to be the quiver obtained from I' by reversing all the arows



connected to i :

I 4i (D)

For ony KII"1- module. we define a new KI<4iI"1- module ditmy, as
fOU.O(DS:

Let N be the map M ﬂ(@c-j MG Define
CHINE fm"e_m' =
Mady,  j#i
ond the maps to be the ones in M if the edges are digjcint fromi. and
to be the composite:
M) e (B ~i M) — cokern
i the edge connects .

The J%Uowing lemma is an easy exercise.

Lemma. 3. (). Let i be a SinRk in ", M on indecomposable module
which is not a Skyscraper module supported at . Then the map v
above is Surjective .
(2). Let i be a Source in I, M o0s in . Then the map n above is
injective.
. Let M be on indecomposable module as in . Then the anonical
Mops :

M e—M —IdM
ore isomorphisms . O

This lemma shows that the functors 4, 97 Lift the eyl group adions of
S on dimengion uectors. of least for M indecomposoble and not a
sRyscroper module.  Indleed, UC i is a sink and M os in the lemma,



we have:
0 — kery — ©j=iMj) — Miy — o0
=> dmdM = (dimMa, -, dimker?, - . dim M)
= (dimMa. -, 2 j-i dimMG - dimMay, - . dimMm)
= Si(dmM)y,
Here recall that :
Si(20j0) =2 QjSiey)
= 2 Qj (0l - <olj.ot >oxi)
= Xjal Qo + 2 j-i - QOG> O - Ak
= 2 j+i 00} +(Xj-i 0j - QYo (Simply-laced)
Similodly, the resut holds for di" as well.

In what follows we shall assume T hos its underlying graph finite
Dynkin.

Now from bosic Lie theory. we know that for any root x>0 of a
semisimple Lie algebra., there exists a sequence of simple reflections
Sig-io=eSi () >0
Sino Sigao -0 Siltety< 0
and moreover, SiwoeSity = olix €A If we could ﬁmctom‘altg ({'ﬁ these
reflections i + Rep(I") — Rep’) . this would give us:
Jir-0o- odi (MY= Sig
the skyscroper module Supported at k. Unfortunately, the reflection
Junctors 7, I do not preserve I Instend. we shall use a dever
trick from Coxeter groups.

let T be a finte Dynkin graph and lobel its vertices by i.2.-.n}
arbitranily. Let RY be the asSociated inner product Space (= Ko(ReptI)
®zR). ond W) be the Weyl group.



Degf. A Coreter element ce W™ is defined to be
C = Tlievm Si
in any order.
Any two Coxeter elements are conjugate by some element in OCRY).

Prop.4. C has no fixed points in R other than 0.
Pf: Let u be @ ﬁxed point of ¢. Since
Snluy= U-<U. oln>oln
Sn-1Sn(U) = Sna(U- €U, B >0ln)
= U = <U, BN >0ln = <U, e > Oln-1 + <UL 0In > <O, Bn-1 > Oln-1.
and further opplying Si.--. Sn2 only modjﬁes SmiSn) by multiples gf X,
®na. TUS QWY=U => <V,00>=0.
Inductively. we have <v.olf>=0, ¥i. Since {oi} forms a bosis of IRF,
this proues that v=o. O

Props. ¥ o#u=Saici€R" has aizo for all i. then for some
meIN, C™V IS no {onﬁer‘ positive.
Pf: Otherwise, c™u were positive for al meN. Since W) is a finite
goup. C"=1 for Some heIN (the minimal such h is called the Coxeter
number of W), Then we would have:

(14 C+-+ C™ LY >0

= 0% (I-0)(+C+-+C""YW) (by Pprop.4)

= (1- "y

= 0.
Controdiction. O

Now let I' be a quuer whose undelying graph is finite Dynkin. It

tumg out that a Coeter element CEeW) can be fiffed to a functor
€: Rep(’) — Rep(I")

In fact, since I is a tree, I' will alwoys hawe a sink, sy in.



Delete (n and all edges connected to in. The remaining graph is till a
tree (may be oliscomnected) and contoins another sink in-. Repeat the
process for i ond Reep going. Indluctively. we will obtain o sequence
of siks in-k1 Jor ireere Jin(D). And finally in o odfna)
Since every edge is reversed Twice. we get bacR oo Jin (=1

Def The nctor obtained by Composmon
6A dn °dtn - QQP - QQP(P)
s colled the Coxeter functor.

Example:
Y YT
1'= 3 3 {
XY
N \/_{L ST
f‘r f‘* f‘r

In this example
€=d'daediods: Repl) — Rep(T').

Now the proof of the theorem is clear. Start with on  indecomposable
M. ond consider it's dimension uector dimM € Zso . By prop5. ImeN
st. cM(dimMy$o but C™@mM) 20, Then 3 1¢k<n st

dim (Jig oo Jine €™ M) = Sia-- SinC™ (dimM)y >
but



dim (Jio0 Jine €™ M) = Siw-Sin C™ (dimM) 30
Since Jix >0 Jine€"'M i indecomposatle (lemma 3.¢3)) , this SaYs
that:

jtl o0 ﬂi:°€m~lf\/\ = Sik- € er( ji; oo ﬂi:(r’)).
s the Skyscper module supported at ir-1. Apply the inverses -

()" Tigoo il Stna) =M
where € = Jino--oJii. In particular,
dimM = ™% 8ip - Sik (Clipa) € WA

IS o positive root. This setS up the desired 1-1 correspondence
between positive roots and  indecomposable  [KII'1- modlules.

Example: For any finite Dynkin odliagom . we hove & maximal root o,
which  corresponais , under the comespondence of thm.2, to a (argest
indecomposoble module M. Let's find this module for Ee,

Recall that the moximal o=>dkoi of @ Dynkin graph con be constructed

oS follouss -

ty. Adioin 1 extma root to make the graph affine.

). Label the uertices on the affine graph by dieIN subject to the

normalization conditions + 2 = 2j—idj , ond the added in root is

labeled 1.

(3). Remove the extm root and o= Xdioi is the desined maximal roct
The di's for Ee is depicted 0s obove. Thus M looks like cin Some



onentation qc Es):
k2

T

e e ks Ky Ik

The maps involued are all surjections (otherwise one con split Mw 8o that
it wont be indecomposable), and the kernels of the maps should be in
gereric” position. By the GL@.ky action, we may asume that the kemel

of the 3 projections are the coordinate oxis .y, 2 resp.. Furthermore,
by the 3 copies gf GlLe2.ky actions , we may reduce the projections into

the cononical jér*ms:
T (359)

e ks Ik
(699) (689
Upto this point, the aboue diagram sfill carvies k*x k™x k* qutomorphisms
coming from resodling the Remels. If we furthen require the two mops
k*—k to be 9“ anonical form  (1.0) . we Qut down the automorphisms
to only k* This shows that the moodule gf cononical fbrm " below is
the desired indecomposable M :

2

T(gé?) M for‘ Es

.oy (599) (539 (10)
Esercice: Find My ﬁ)r On (n24), E7 Es.

Further remarks
m.In clossiodl Lie theory, a Simple Lie algebm g with Dynkin cdliagram



I has a decomposition:
o= @ hon
and positive roots occur in the dlecompoSition
Nt =D e @oz
This story has much longer history than that of quiver representation
(Lusztig, Ringel etc. 19%0's - 1980'S)
Furthermore , classically, PBW theorem says that.

Uenh £ U = Duzo Ut
where L=>0i0k 20. UMW) has as basis Xe 2 Ka- How with Ziacte
=u. And for L, V20, we have:

U'wy- Uto € U+
On the quiver representation Side. for eoch fixed dimension vector v=
Tlroz, We con consider the “moduli space” of IKII'1-modules with
o fixed dimension vector U -

{M| dmM =v}/iso
Upon choosing o bosis for each My, the isomorphism classes are
paametrized by the quotient space:

(-ﬂ-u:i—éj e e Hom(lka", k%)) / Tlieum GL@, k).
By the Krull- Schmiot property, any finite dimensional module is a direct sum
of indecomposobles . thus the orbits are in biiection with
(D Mo | Ma: indecomposable with dimMs = o, Sbioti = v}

Hence:

% orbits = dim U'w)
Lusztig pushed this futher by Stoying the topology of the ‘Mool
Spaces” (actually they are quotient Stacks) by looking at £-adic sheoues
on them. By doing so he was able fo construct a. Cononical bosis of
U (or rather. its quantum deformations Ug) satisfying amazing integral
and  positivity properties  (Lusztig - Kashiwara. basis). Recently. Khouanou -
Louda found o combingtorial way of describing this bosis.



Example: Let's [ook ot ore example of the aboue cormespondence:

o—> =0
& Ol2

For @ fxed dimension vector Mot +noka . Hom (k™. k™ / GLem.Jk)x GLan, k)
are parometrized by the set (W.L.0.G assume mzn) :

(e[l O
Onr O /mwn

For each fixed r, the comesponding isomorphism class of kLTI -moolues is
the direct sum of  indecomposables:

k) 2 (S —® @ (k>0 P™ @ (0> kP

o<r<n=mnim.n} }

ond thus
# Hom (Ik™, k™ /GLim.kyx GLin. k) = 1+ min{m.n}

which i8 the same a8 dim Uty cmon+noiz)

° ) o3 °
° ° °
¢ e > 400+2002

L °
- | dim"w(-t{(s)) (40012002 = Miné4,2)+1=3
oy ola

. The following resutt i8 worth mentioning

Thm. If a ﬁni’(e dimensional algebra. over on - algebraically closed: field
k hos finite represenfat«on type and homological dimension |, then it's
Morita, equivalent to & KII71, where T% is an oriented Dgnknn dliagrom

In this cose. being Monito. equivalent to Tl kII] just means that
the dlgebra. itself is isomorphic to TIi= Mat(ni, KITiD) . (i€ N), 60



that the representation category of the algebm is isomorphic to that
of T keI,

The representation Theory Qf fnx‘te dimensional algebras /€ con be viewed
0s storting from Rep(@lG) , where G is a fiite group. The aategory
is Semisimple , and thus -
(> It's of homological dimension O, ie. all modules are projective.
i Its of finte representation type.
I we stort o loosen any of the requirements, we obtain mony more
objects -
i If we allow homological climension 1, without finite representation type
nequirements, we cbtain rings ke KIT'1 for any onented groph T
(i If we only Keep the finite representation type requirement but drop
the homdlogiwl dimension condiition, we hove nings Re CIXI/x™ .
Thm1. Thm2 and the thm aboue Says that the nrings that satisfy
both ¢ and ¢, we essentialy an only get path dgebras of A, D.
E type!

Problem: Find this analogue in  number theory, ie. ﬁnd similor condlitions
as (i (i) above Jor Or , and cossify these number fields F's.

(i), Beﬁne ending the discussion. we mention some examples of  affine
and wild type quivers.

Example: For affine graphs. we have the associated  Koc - Moody algebras
and now the root system consists o real roots and imaginary  roots.
For positive real roofs ¢ real meaning («,0)=2 in the associated Corton
formy, the story is similar as for finite Dynkn case , and we have a
unigue indecomposable  kII"1-module. Howeuver, for each imaginary roct,



we have @ I-parameter family of  indecomposables. We illustrate this
phenomenon  with the example qf Kronecker quiver, whose associated
Koe-Moody olgebra. is -4lc2) -

——»
o ol
2 -2

The Corton ﬁ)rm S given by (372) The positive real roots are
{ney+ (nthyotz| Nzot U {ntnon + nova | n20}
and the associated indecomposables are

P + + 4
c" S c™ ™ + <"
where
Pi= (18"”) . P.= (I%xn) G= (Ino) . (2= (0.1In)
respecfruelg .

The positive imoginary roots  are :
N8 = { nov+nxa | n21 }
(8 is the nul root on+o ). For each nx. we have a famr@, porometrized

by AeC, of indecomposables:
1d

Jdn.a
where Jna is the Jordoan matrix (A'!-"‘A) e,

n n

C C

Exercise: For Da. fid a famly of indecomoposables for 08, nz1,

where 8= Olo+ 0l + 20z + Ol + Ola

™o Ol3
X
o, Clg

Beyond the affine cose. the problem becomes really diffieutt. For instonce,



Gelfond showed that the problem of clossifying modules over T”
Ds with one extra vertex adjoined to the central vertex is in Some
sense equally as Oifficutt 08 thar for Du with any number of extra
vertices adjoined !

o
r e

Gelford's result sy that for any fixed dlimension
vector  of I”', the moduli space’ of KkII"1-
modules oon be embedded in that of I of
Some large enough dimension vector . And
vice versa.!



§2. Applications on Spectrol - Sequences

The geal qf this section iS 1 undenstond, ﬁom a repregentation theoretic
point of Uiew, why the differentils O~ appear natully in the Spectral
sequences of  double complexes ouer a fied Ik.

(Co ) Homology of  complexes
From representation theoretic point of  view. a complex (", dy ouer k-
Ay dy i yin D
is nothing but a grade mooule cuer the goded ning kidi/cd® , where
degd=1. Note that kLd1/c = H%S' k.
Groded indecomposable modules cver krd/cd®) ore easy to CBSSY.
They are:
. 8- —0—0—k —0—0—
where the only non-triuial term sits in - homological degree (i€ Z. These
are exactly all the Simples,
2. P —0—0—k Lk—0—
(ohere the J‘Trsr non-trivial term k sits in degree (. i€ Z. They are all
Jree modues and thus projective. Actually they are injectives as wel. ccf
the proof of the dossfication result below.
It's rendily seen that any grooed module V' is just a diect sum of
these  indlecomposables  «Krull - Schmidt) -
V'= @iezS o P
and toking corhomology just picks out the simples:
H* (V") = DiezQ

Bicomplexes and  spectral - Sequences
A bicomplex V**/k consists of a laffice of vector spaces Vi ijeZ
equipped with differentiols dh chorizontaly, da cuertiodly - Satisfying:
a’= O=d22 . dida+o0i=0



lMZ lf'dz ]fdz
_la\f G\,

sz fda 1|\dz

A\ gy L,

']Mz sz sz
L\, iR,

?dz 1d2 1|‘dz

There are several cohomologies we @n toke:
w1, Horizontal homology: H'(V™", d)
@. Vertical cohomology = H(V™" da)
@. Total cohomology = This is where we collapse the bignading into a
single one and toke cohomology H*(Tot* (V™). D). where
{TOTR(\/.'.) £ Bivj=r V"
D= ditda TotA (V™) — Tot (V™)

A spectral sequence of the double complex V™" says that we
an Qlculote the total cohomology (at least s vector spaces) uia the
Following - procedure:
1y, Toke the wertical cohomology H™(V™*, )& E™*. Note that o
still acts o8 a agjffrential on it horizontally -

.._Q‘_, Eilﬂljﬂ__ i,j+\ d,> Ei-r\,jﬂ d.

e .

_.__Q,E:"'J'_Q‘., Ei'j —ld, Ef""j_Q_, ..

_Q;E‘HJI__Q’ E'i.j-l_g. Eiﬂj—_l_ﬂ)m




@. Toke the cohomolagy of H™(E™, di)2E2"". and a new differential
02 :

~. dl

\%\LF\) i, jtl
< Ez E2 2~ dl
-
TP | el e \d
Il\* l"l.j"l i I~ it
Ea'_| Ea B2 da
\dz\\\'
~—

. Inductively, Jorm the cohomology  complex H*(EX, dn-) 2 EX™*, and
equip it with a differential o - Ei g

r aN

i#f, j-P

. Possing to Ex", @i <Eud wil be isomorphic to H¥( Tot (V") D) as
k- vector spaces. (More precisely. there is a flitration on H¥( Tot (V") D)
whose associated graded module s isomorphic to Dexjer i ).

Remark that we moy equaly start with toking horizomtal Cohomology as
Er page. We just reflect all pages Ea Es.~ and Ew dbout i=j axis,

The main goal here i8 to uncerstand why toking  cohomologies of all
dr's IS necessary.
As with complexes. we start by reinterpreting any deuble complex as a



bigmded modlule ouver the bigraded nng kL, 021/¢0% 03 , chdat o0y & Az,

where O hos degree (L.0Y, and 0: hos oegree (0.1, Note that /\, =
H*(S'xS' k).

Thm 1. (Classifioation of  indecomposable modles over As)

Let V™" be a bicomplex , bounded in some finite region of Z2, but
might be infinite dimensional in each fixed degree /. Then it decomposes
into a direct sum gf indlecomposables , which ore  classified as Jollows:

0
(hje &) T
0
. k — Ik
F@QS : DI'J T-l '(-I)T
tihje Z) fijy k = K

And the following zig-zag types, ijeZ. 4N and £ denotes the number
of arrows i the diggram -

itk fijik —Ls Kk
[ ]

k —— Ik k——

.|T q\

K — s [k k —— Ik

Z 1 "T i "T

lk 3



The proof’ of the thm. will be defered. But now let's look at its
implications . We compare . for each type of  indecomposable aboue,
its contribution to the cohomology groups:

@. H" (-, d

. H" (-, D)
Recall that (o amouts to forget about the honizontdl armows in these
modules ond Compute its uertical Cohomology , while (» collapses the

bigrading into Q s:‘rg(e one ond toke (_bhomo(ogtj. For instance . J‘br‘
pH

k & Ik O @ O

Toke 0O
”< _I_.) “< ) T-l lH)T Cohomo(ossj ‘ \
T" -(—n)T aplk & Kk ipo & 0

ik < K \
(b

D D 2D R’ Toke D A A s ——
O k2K K ™0 ooy 020 T2 T
|'+J' t'+_j+| 42 s i+ 441 i+jt2
We tobulote these results as J%llows-.
" P Z4, 4:00d
0—o0 °
H™ (-, o) lkdi.jy o o=
0 — 0 °—o
G 5
H (-, D) le{ixj} 0 0




Zih 21 even Z4y 4: even 24y 2o
k —o
.0 o {I‘.ij—O T
H™ (- )| -0 | L G
bkt -4} T i
' 0 fiel By
H*(-,D) lk {i+j} lk fi+jh O

From this comparison we conclude that the only discrepancy comes about
when foking - cohomologies of Z%. ¢:odd. Then these differences are
Rilled Oﬁ bg drs in Er:

£ Or H'(-.d
— 7 O
~

N

—k

{i+p, j-rai}

Hence step by step. a Spectral sequence remoues all the discrepancies
caused from ZJe . fiodd, and retums with on accunate accaunt of

the size qf H'(Tot(V™"y, Dy,

Example: Hodge to de Rhom spectral Sequence.
let X be a cosed almost complex monifold and J  the associoted
almost complex  Structure J*=-1 on TeX. Upon choosing Q. Compatible
metric, we may equip the cotangent bundle TRX with the same
complex structure acting as an isometric endorrorphism of TRX.
Then:
TEX = TRX ®=C = TOX) @ T*'(X)



decomposes into ti-eigen spaces of J, and S0 does the associated
de Rham complex:
(XY, d) 2(@p.g QPHX) . d)
where OFX) = TUX, ARTeX) and QP4ex) = (X, AP TUXI® AT (X))
are the spaces of smooth Sections. The famous thm. of Newlander
ond  Nirenberger States that J is a complex Structure |
d: QPAx) — O 4% @ OP¥x)
(C.f. Hugbrechts. Complex geometry. an introduction , §2.6). If this
hoppens, d=2d+3, where:
{Qpﬂ(xy £, O™
QPAx) & OP4'(x)
ond the condition d*=0 <
3*=0, 9°=0, d3+dd=0,
Thus to any complex monifold, there is the asSociated Hodge to de Rham
spectral sequence:
P2 = HA O X, 3) = HP( O X.O), o).
Now f we essume j&rther\mone that X is Kahler, we have the:

Lemma (The 33-lemma) Let X be a compact Kihler manifold. Then
Jor & d- closed form o Qf type .9, the jb((owing are  equivalent :
D. of i d-exact

i), X 8 o-exact

i, o is 9-exact

v. o 18 39-exoct, ie o=338 Jor some B of type p-.a-),
(C.f. Huybrechts, Complex geometry, on introguction, Gor. 3.2.10).

In our context. if o belongs to Some indecompogoble summand of
the €C[3.31-module ®pgqQP4X), then o arises as



N
i
o

Checking our list of indecomposables. this could only happen for modlules
of tye SY and PY Thus we condude that
Dpg OPYX) = D (SH) ™ g(PY)eM)
and the spectral sequence degenenaies at B This estoblishes the well-
known Hodge Olecomposition  theorem ﬁr Kahler manifolds
HRX,C) = Bpa=k HIO™,3).

Clossifieation of indecomposables  over Az .
In this part we shall prove thm. |
Let V™" be a bigraded mooule over Az. We first show that . i ve
\/‘J i8 a homogeneous uector , and did:u+0 (S0 that ckdiU#0 aS
. then v generates o copy of PY ond we con split it off
ﬁom V
=Pyt

That v Qerenates o Copg of P is mawlg seen , so that it's
0. projective module ¢ free). To show that it's actually @ direct
summand, we Shall show that P s injective 0S well. To do this
it's worthwhile to be slightly more general -

lemma 2. Let A be o Frobenius algebma/k (ie. a finite dimensional.
unital, associative algebra. equipped with @ bilinear . non-degenenate,
painng €: A®KA — k st &wb.c)y=¢gwa.be)y,va.b.ceA). Thenaos
o module ouer itself, the Jree mooule A is dlso injective.

Example: Frobenius - algebms .



(). Mn(k): the matrix olgebra with ECA.B) = Tr(AB) , vA.BE Mn(k).
(). KIGT : the group algebra Qf Q fnﬁe group G . with € given by:
eqa (' &
0 §=i
3. HM.k): cohomology rings of compact. k-orientable monifolds
where € i given by , Va.be H* M. k) -
£(0.b) 2 Jo QUb
ond M1 gerotes 6 chosen k- fundomental closs. The  non-degeneracy
qp g is guannanteed by Poincore ouality.
The rings we are considering are of  this type:
H*% S, k) = ktd1/d?
H*S'xS k) = Na= lkcdi.d21/(d?, di . chida+0l20)
Pf of lemma 2
For any finite dimensional k-algebma A, A= Homu(A. k) becomes an
A module” f we defe: vfe A*, fiontfixa) If A s adso
Frobenius .
g A" A
a — &-,0)% &
s an isomorphism of  A-modules: it's a map of A-modues Snce
va.b, xe A.
Ea:b (X) = E(X.0D) = EXa.b) =(0-Enx)
and it's an iSomorphism Since € i8 nonodegenerate. It J%((ouos that
A 18 injective Since
Homa (—. A) = Homa(-, A"
= Homw(A®(-) , k)
s & composition of exact functors 8o that it's exact. The last step
Pollows from the general tensor-hom adjunction: if A is a B-agebra,
then. for any A-moode M and B-modue N,
Home,(AGOAM, N)& HomA (M., Homg(A.N1) O



It fol(ouos that we can Split qﬁ” ol vectors U with d0hu+o. Thus

we may assume that v ueV™, dhdiu=o0 . Again. if we set
D=di+0h,

we con obtan a decomposition, ¥ (.je Z:
VY = (ker DY @ Comp"
where Compi'j I8 an orbitrary vector space  complement  to (kerD)"
Under our assumption . the module V™
o
e YWY V!*'-Jﬂ —

|

e — \/i'j —_ \/iﬂ'j —_
| |

Clecomposes  0s:

(KQT‘D)LFQCMDU“ (Ker DI @ Comp™"
(KerD)') @ Comp'l (KerD)" @ Comp™

—

.e. it's clecomposent into 2ig-2og’ types ¢ the red part):

s (kerDY " e— Comp™ — ther D) — Qomp*i— -

Modules of this type are no other thon modules ouer the type A
path dlgebros we introduced in the previous  Section



------- V—<0—>0—<0>0<0 'LUPQ A QLUIUQP

Moreover, bounded modules of  this quiver . ie. moolles cuer Some
An ﬁr n»o , are direct Sums cf indecomposobles  ceuen ir}ﬁnfte dimen-
sional ones). which were Cdassified to be in bijection with the positive
roots of An. and of the fom:

i+ 0> 0 —<— k—>— [k - k—>— k—<—0—>—0 -~

These ove precisely the ‘zig-za5" and Simples desaribed in thm 1. ond
we ore gone.

Finally, we remark that if we are consiolening  unbounded bi-
complexes . we obtain 3 more types of  unbounded  modlules . comin
0S8 module cver Aw' , which are unbounded on both ends , or bounded
on one end:

A’ quiver
_______ k ——) 0 —>—1k
t M B
k—3" I Kk—3— I k—>~Ik
q | |
k> i jt_>L K k—>1 i
M p *'
k—st K k—— k—>— Ik
(1) | (I + (10

Note that if' a bicomplex contains some of these infinite length
modules, the spectral sequences Constiucted from it need not Conuenge.
Let's ook at, for instonce, the unbounded cose (D):
Oﬂ the E page N . |
EVY=H(\ da) =0



{ L

k—3" Ik 0
A H¥(-. dha) |
k—>L - o 0
M |
T

k—>>- K
|

However, the D cohomology 18 non-zero:
o —— 0 — Biy=r k —= @ij=rilk — 0 —>
D is injective. but ImD Consists Qf ( afj-)hj:m with
> (—n’ag- =0,

which is of codimension | in @isj=rk , and thus

(Tt V) D) = {lk x=o0

o otherwige
ond these discreponcies couldn't be compensated throughout  Er.
Similorly, the Ei page of Vi

5t Xk o
{ij} . {i.j
; +! | H'-.da) i ‘
K—>— Ik iy o T
+-|
k—>- Ik 0o 0

This copy of k is never Rilled in the Spectral Sequence. and wil
contribute & copy of k to cegree r=itj if we collopse the bigrading.
But the D ohomdogy is again k in r !

Problem + Try to work out what we did for filtereol complexes.



