Categorified Quantum 1/12) at Prime Roots of Unity

- Why do we want to categorify upide?
- Reshetikhin-Turaev Witten :

Ug(1/2) is the quantized gauge group of 3d Chern-Simons theory.

• Crane - Frenkel:

Categorify 3d Chern-Simons to a 4d-TQFT.

 $U_2(1_2):$ quantized 2-gauge group?

• Quantum 1(2) at roots of unity.

We are interested in the idempotented version of $u_2(u_2)$. It is generated over $\mathbb{Z}[q,q^{-1}]$ by pictures of the form

with the algebra structure

$$\frac{1}{1+1+1} \cdot \frac{1}{1+1} = 8_{\lambda\mu} + \frac{1}{1+1+1} + \frac{1}{1+2} \qquad (etc)$$

Modulo relations (at a 2k-th root of unity, k odd)

$$\frac{\uparrow}{\exists} \frac{\lambda}{\exists} = \frac{\downarrow}{\exists} \frac{\lambda}{\exists} + [\lambda] \frac{\lambda}{\exists} \frac{\lambda}{\exists} (\lambda \ge 0)$$

$$\frac{1}{F} = \frac{1}{F} + \frac{1}$$

$$\frac{1}{k-many} = 0 = \frac{1}{k-many}$$
(Nilpotency relation)

Categorification of Ug(42)

Below we present Lauda's diagrammatic calculus for $U_q(\mathcal{U}_2)$ at a generic q-value. The rough idea is that:

- Pictures = Isomorphism class / symbol of some modules
- Sum of pictures = symbol of direct sum of modules
- Equalities of pictures = isomorphisms of modules.

In general, isomorphisms are rare between modules. Instead, study homomorphisms between them. Intuitively, homomorphisms = evolution of pictures, which is not necessarily revensible

Maps just among E's (or F's) (Khovanov-Lauda-Rouquier)

(Nil-Hecke algebra)

ullet To categorically Drinfeld-double E's . Lauda introduces cups and caps

Together with the nil Hecke algebra generators, cups and caps satisfy certain relations

E.g. (i) Biadjointness

(ii) Bubble positivity (degrees of $\bigcirc_m := \bigcirc_k$ must be ≥ 0)

 $k = \frac{1}{2}(m+1-\lambda) \ge 0$

 $\ell = \frac{1}{2}(m+1+\lambda) \geq 0$

(iii). Nil Hecke relations

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} = \begin{array}{c} \\ \end{array} \end{array} = \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} = \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$$

(iv) Reduction to bubbles

(v). Identity decomposition

Thm. (Lauda) This graphical calculus is non-degenerate and categorifies $\dot{U}_{g}(\mathcal{U}_{2})$ at a generic g-value.

Rmk: Lauda's calculus is a 2-dim'l idempotented algebra, i.e. it has two compatible multiplication structures (vertical and horizontal). Such idempotented algebras are also known as a 2-category)

To see the plausibility of this categorification, we consider how EF11 λ can "evolve" into FE1 λ \oplus 1 Λ

These elements {ux}, {ux} satisfy

$$\begin{cases}
U_i U_i U_i = U_i \\
V_i U_i V_i = V_i
\end{cases}$$

$$V_i U_j = O \quad (i \neq j) \quad ,$$

which follows from the identity decomposation relation. Consequently $\{U_i | i=0,\dots,\lambda\}$ form an orthogonal set of idempotents in $End_{\mathcal{U}}(\mathcal{EF1}_{\lambda})$

(Factorization of idempotents)

· Enhancing U with a p-differential

As we have heard from Mikhail's talk, if A is a p-DG algebra, then the derived category of p-DG modules over A is a module-category over the homotopy category of p-complexes.

Def. Let (U,∂) be Lauda's 2-dimensional algebra equipped with the differential ∂ -action on generators given by

$$\partial(\stackrel{\wedge}{\bullet}) = \stackrel{\wedge}{\bullet} \qquad \partial(\stackrel{\wedge}{\searrow}) = \stackrel{\wedge}{\uparrow} \qquad -2 \stackrel{\wedge}{\searrow}$$

$$\partial(\stackrel{\wedge}{\downarrow}) = \stackrel{\wedge}{\bullet} \qquad \partial(\stackrel{\wedge}{\searrow}) = -\downarrow \qquad -2 \stackrel{\wedge}{\searrow}$$

$$\partial(\stackrel{\wedge}{\searrow}) = \stackrel{\wedge}{\downarrow} \qquad -2 \stackrel{\wedge}{\searrow} \qquad \partial(\stackrel{\wedge}{\searrow}) = (1-\lambda) \stackrel{\wedge}{\searrow} \qquad \lambda$$

$$\partial(\stackrel{\wedge}{\searrow}) = \stackrel{\wedge}{\searrow} \qquad -2 \stackrel{\wedge}{\searrow} \qquad \partial(\stackrel{\wedge}{\searrow}) = (1-\lambda) \stackrel{\wedge}{\searrow} \qquad \lambda$$

Lemma. The above ∂ preserves all relations of $\mathcal U$, and it is p-nilpotent over a field of characteristic p>0.

Thm. (Elias-Q.) The derived module category $D^b(U, \partial)$ is Karoubian, and it categorifies $u_0(-d_2)$ at a p-th primitive root of unity.

$$K_0(\mathcal{U}, \partial) \cong \dot{u}_g(\mathcal{U}_2)$$

• Decomposition v.s. filtration.

In Lauda's abelian categorification, the relations in $U_2(1)$ are usually realized as different ways of decomposing projective U-modules.

In the realm of triangulated categories, direct sum decompositions are very rare. Instead, a short exact sequence of p-DG U-modules gives rise to a distinguished triangle in $D(U,\partial)$.

More generally, a filtered p-DG module (M,F) presents M as a convolution (Postnikov tower) of grF.

Example In the nilHecke algebra NH2:

NH₂
$$\cong$$
 Sym₂ $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

- \Rightarrow 0 \rightarrow $P_2\{i\}$ \rightarrow NH₂ \rightarrow $P_2\{i\}$ \rightarrow 0 is a s.e.s. of (\mathcal{U}, ∂) -modules.
- $\implies \qquad \text{In } \mathcal{K}_0(\mathcal{Q}_1,\partial_1), \quad \text{\mathbb{E}^2= $[(NH_2,\partial_1)] = $Q[P_2] + $g^{-1}[P_2] = (g+g^{-1})$} \, \text{$\mathbb{E}^{(2)}$}$

Prop. Let $\{(u_i,v_i)|i\in I\}$ be factorization of idempotents in a p-DG algebra R. If there is a total ordering on I such that

Then if $\mathcal{E}=\Sigma_{i\in \mathcal{I}}$ uivi, then the p-DG module $R\mathcal{E}$ admits a filtration F^* whose subquotients are isomorphic to Rv_{iui} 's

Cor. (Fantastic!) In the situation of the Prop. [RE] = $\sum_{i \in I}$ [Rv:u:].

Cor. Under the differential defined earlier on U. there is a filtration on EF1x

• Uniqueness: a small surprise!

Lauda's factorization of idempotents, in general, is not unique.

However, in the presence of a diagrammatically local differential (not necessarily the differential we defined here, but any ∂ compatible with the local relations of U), we have, up to conjugation by diagrammatic automorphisms

- The differential we defined here is the unique differential such that the modules $EF1_{\lambda}$ ($\lambda \ge 0$) admit filtrations whose subquotients are isomorphic to $FE1_{\lambda}$, $1_{\lambda}\{1-\lambda\}$,... $1_{\lambda}\{\lambda-1\}$.
- Lauda's factorization of idempotents is the unique choice that is compatible with the differential.

 (Fantastic Filtration)