Categorification of small sl(2)

In 1994, Crane and Frenkel published their seminal paper "Four dimensional topological quantum field theory, Hopf categories, and the canonical bases". There they proposed a program called "categorification", hoping to lift the combinatorial 3D TQFT constructed by Kuperberg to a 4D TQFT:

Homological Algebra

For simplicity assume we are working over a ground field Ik. The usual homological algebra has the following key features.

(o). Chain complexes and their cohomology groups
$$K^{\bullet} = (\cdots \xrightarrow{d} K^{i-1} \xrightarrow{d} K^{i} \xrightarrow{d} K^{i+1} \xrightarrow{d} \cdots)$$
 s.t. $d^2 = 0$ $H^{\bullet}(K^{\bullet}) = \text{Kerd/Imd}$

- (1). Direct sums of chain complexes
- (2). Tensor products of chain complexes $(K \otimes L)^{\bullet} := \bigoplus_{k+\ell=i} K^{k} \otimes L^{\ell} , \ d(x \otimes y) = d(x) \otimes y + (-1)^{|x|} x \otimes d(y)$ $K^{\bullet} \otimes k \cong k \otimes K^{\bullet} \cong K^{\bullet}$
- (3). Inner homs $HOM^i(K^i, L^i)$ $HOM^i(K^i, L^i) := \{f: K^i \rightarrow L^i | f(K^k) \subseteq L^{k+i}\}$ $d(f) = d_L \circ f - (-1)^{\{f\}} f \circ d_K$

with the property

$$HOM'(K'\otimes L', M') \cong HOM'(K', HOM'(L', M'))$$

 $H'(HOM'(K', L')) = Hom_{C(K)}(K', L')$

(4). Triangular structures: homological grading shifts / the cone construction/distinguished triangles coming from s.e.s./compatibility axioms etc.

Homological algebra is an important tool in categorification since it gives a systematic lift of operations in \mathbb{Z} :

Rmk: If we take graded vector spaces, we get a categorification of $\mathbb{Z}[q,q^{-1}]$:

$$K_0(D^b(\mathbb{k}-\text{guec})) \cong \mathbb{Z}^{(q,q^1)}$$

The grading shift $\{i\}$ becomes multiplication by q.

Observation: Properties (2), (3), (4) are reminiscent of some familiar constructions in representation theory: Take a group G, H:= lkG is a Hopf algebra and the category of H-mod has

- (1') VOW EH-mod
- (2') V⊗W ∈ H-mod h.(v⊗w):= hav ⊗ hav
- (3') $HOM(V,W) \in H-mod$ $h \cdot f(v) := h_{(2)} f(S^1(h_{(1)}))$, right adjoint to \otimes . The usual homological algebra can thus be regard as for the graded Hopf super algebra $H = IkEd J/(d^2)$

Question: Are there analogues of the other features displayed by the usual homological algebra? For instance, what is cohomology?

Any
$$K^{\circ}$$
 decomposes "uniquely" into direct sums of \oplus (0 \longrightarrow \parallel k \longrightarrow 0) \oplus \oplus (0 \longrightarrow \parallel k \longrightarrow 0) hom deg j

Taking cohomology just kills the second factor. Note that the second factor consists of projective $lk Ed 1/(d^2)$ modules.

Less obvious: $(0 \rightarrow lk \rightarrow lk \rightarrow 0)$ is also injective. In fact, $lk Ed J/(d^2)$ is a Frobenius algebra $(\cong H^*(S^1,lk))$.

Thm (Radford - Larson, Sweedler) Any finite dim'l Hopf (super) algebra is Frobenius. In particular, the class of projective modules coincide with the class of injective modules.

What's the systematic way of killing projectives/injectives?

The stable category H-mod

Intuitively, H-mod is the categorical quotient of H-mod by the class of projective/injective objects.

Def. H-mod consists of the same objects as H-mod, while the morphism space between two objects K, L are given by

$$Hom_{H-mod}(K,L) := Hom_{H-mod}(K,L) / morphisms that factor through projectives$$

The notion of stable categories makes sense for any Frobenius algebra, not necessarily those coming as finite dim'l Hopf algebras.

Thm. (Heller) If H is a Frobenius algebra, then H-mod is triangulated.

In general, the morphism space between objects in an arbitrary stable category is hard to compute. But for H-mod, the morphism spaces can be computed explicitly. To do this, we need the notion of integrals of Hopf algebras.

Def. Let H be a Hopf algebra. An element $\Lambda \in H$ is called a left integral of H if \forall h \in H,

 $h\Lambda = \epsilon ch \Lambda$.

Thm (Radford-Larson, Sweedler) Any finite dim'l H has a non-zero integral Λ , unique up to a non-zero constant.

Example. (1). $lkG = \sum g \in G g$ is a left integral

(2) $|k E d J/(d^2)|$, $\Lambda = d$ is a left integral.

(3). $U_{N}^{+}(\mathcal{L}_{2})$, $\Lambda = (\sum_{i=0}^{N-1} K^{i}) d^{N-1}$ is a left integral

(4) $|k[\partial I/(\partial^p)|$ (charl |k=p>0|), $|\Lambda=\partial^{p-1}|$ is a left integral.

Prop. Let H be a finite dim'l Hopf algebra, and K, L be H-modules. Then

 $Hom_{H-mod}(K,L) \cong Hom_{H-mod}(K,L) / \Lambda \cdot HOM(K,L)$ $\cong HOM(K,L)^{H} / \Lambda \cdot HOM(K,L)$

Example. Note that H acts on HOM(K,L) by $h(f)(k) := hax f(8^{-1}cho)(k)$

 $(2) \quad \wedge \cdot (f) = of + (-1)^{fi} f d$

(3) f homogeneous of K-degree I-N, $\Lambda \cdot (f) = \sum_{i=0}^{N-1} d^{N-1-i} f d^i$

(4). $\Lambda (f) = \sum_{i=0}^{p-1} \partial^{p-i-i} f \partial^i$

Relation to categorification

Def. $H=lk[\partial]/(\partial^p)$ deg $\partial=1$. We call the category H-gmod the category of p-complexes while $H-g\underline{mod}$ the homotopy category of p-complexes.

Why do we care about p-complexes?

This was an observation of Bernstein-Khovanov: If $H = |k \in \partial J/(\partial^p)$, where $deg(\partial) = 1$, then both H-gmod and H-gmod are symmetric monoidal. Furthermore,

$$K_o(H-gmod) \subseteq \mathbb{Z}[g,g^{-1}]$$

$$K_o(H-g\underline{mod}) \cong \mathbb{Z}[g]/(I+g+\cdots+g^{p-1}) := \mathcal{O}_P.$$

To utilize this "categorical cyclotomic integers" H-gmod, we need to find interesting "algebra" objects in this category. Then the Grothendieck group of this algebra object will naturally be \mathcal{O}_{p} -modules. Recall that an algebra object in the category of chain complexes is given by a differential graded algebra. This motivates the following.

Def. A p-DG algebra A over a field of char p>0 is a graded algebra together with a degree-one endomorphism $\partial s.t. \ \forall \ a.b \in A.$ $\partial(ab) = \partial(a)b + a \partial(b)$ $\partial^{p}(a) = 0$

More generally, one has the notion of an H-module algebra, which gives rise to algebra objects in H-mod. We refer to the study of homological properties of such algebra objects in H-mod and their module categories as "hopfological algebra".

In analogy with the usual DG case, one has, for a p-DG algebra (A,∂) -mod $\longrightarrow G(A,\partial) \longrightarrow D(A,\partial)$

Thm. (Khovanov, Qi). The homotopy and derived categories of p-DG algebras are module categories over H-gmod. Under taking Grothendieck groups (in some appropriate sense), $K_0(D(A,\partial))$ has the structure of an O_P -module.

Categorification of small 1/12)

The small quantum group $U_0^{\frac{1}{2}}(1/2)$, where $q = \zeta_N$ is a primitive N-th root of unity, is defined by Lusztig as the twisted bialgebra $O_N[E]/(E^N)$, equipped with:

Here twisted means that $U^{\dagger} \otimes U^{\dagger}$ has the product structure: $(E^{r_1} \otimes E^{s_1}) \cdot (E^{r_2} \otimes E^{s_2}) = \zeta_N^{s_1 r_2} \otimes E^{r_1 + r_2} \otimes E^{s_1 + s_2}$.

We briefly review how the categorification of $U_2^{\dagger}(1/2)$ is done at generic values of q, as done by Khovanov-Lauda.

By categorification of the algebra U_2^{\dagger} we mean that to find a monoidal category U^{\dagger} whose Grothendieck group is naturally isomorphic to U_2^{\dagger} . In particular

$$\mathcal{U}^{+} \xrightarrow{\mathsf{K}_{o}} \mathcal{U}_{g}^{+}$$

$$\mathcal{E}, \mathcal{E}^{i}, \mathcal{E}^{ii}) \longmapsto \mathcal{E}, \mathcal{E}^{i}, \mathcal{E}^{(i)}$$

The hard part of the story is to pin down the morphism spaces between the objects. We give the answer due to Khovanov-Lauda.

The nilHecke algebra on n-strands NHn:= Endsymn(Pn), which has the following Coxeter presentation. It's generated by $x_1, \dots, x_n, S_1, \dots, S_{n-1}$, subject to relations that the x_i 's commute and

$$x_i \delta_i - \delta_i x_{i+1} = 1 = \delta_i x_i - x_{i+1} \delta_i$$

 $\delta_i x_j = x_j \delta_i$, $\delta_i \delta_j = \delta_j \delta_i$ if $|i-j| > 1$
 $\delta_i^2 = 0$, $\delta_i \delta_{i+1} \delta_i = \delta_{i+1} \delta_i \delta_{i+1}$.

By definition NHn \cong Mat(n!, Symn) so that $K_0(NH_n) \cong \mathbb{Z}[9.9^{-1}]$. There is an inclusion of algebras

Ln.m: NHn ⊗ NHm ← NHn+m

which gives rise to induction and restriction functors on module categories.

$$\bigoplus_{n\geq 0} NH_n - mod \xrightarrow{K_0} U_2^{\dagger}(\mathcal{A}_2)$$
 $P_n \longmapsto E^{(n)}$
 $NH_n \longmapsto E^n = [n]! E^{(n)}$
 $Ind / Res \longmapsto multiplication / comultiplication$

To utilize this beautiful 2-quantum group in our current work, the most naive guess might be to put a p-DG structure on NH and study the associated p-DG categories. The miracle is that this naive guess works!

Define on NHn the following differential

$$\partial(Xi) := \chi_i^2 \qquad (i=1,\dots,n)$$

$$\partial(\delta_i) := -\chi_i \delta_i - \delta_i \chi_{i+1} \quad (i=1,\dots,n-1)$$

It's easy to check that $\partial^P \equiv 0$.

Thm. (Khovanov-Qi)

$$\bigoplus_{n\geq 0} \mathbb{D}(NH_n,\partial) \xrightarrow{K_0} U^{\dagger}_{\xi_p}(\mathcal{U}_2)$$
 $(P_n,\partial) \longmapsto \mathbb{E}^{(n)}$
 $(NH_n,\partial) \longmapsto \mathbb{E}^n = [n]! \mathbb{E}^{(n)}$

derived induction/ \longmapsto multiplication/
restriction comultiplication

Examples.

- (1). n=o, $(NH_o,\partial) \cong (lk,\partial)$, so that $D(NH_o,\partial) \cong H-g\underline{mod}$. Therefore $K_o(NH_o,\partial_o) \cong \mathcal{O}_P$, as a gift from Bernstein.
- (2). n=1, $NH_1 \subseteq |k[X]|$, $\partial(x) = x^2$ so that NH_1 decomposes

$$(|k[X], \partial) \cong \begin{pmatrix} \bullet & \circ & \xrightarrow{\partial} \circ & \xrightarrow{\partial} \circ & \circ & \circ & \circ & \xrightarrow{\partial} \circ & \xrightarrow{\partial} \circ & \cdots \end{pmatrix}$$

Therefore the inclusion of the ground field $lk \hookrightarrow NH_1$ is a qis, which induces an equivalence of derived derived categories.

$$\Rightarrow$$
 $K_0(NH_1, \partial) \cong K_0(lk, \partial) \cong \mathcal{O}_{p}$.

Thm.(Qi). If $A \xrightarrow{\varphi} B$ is a map of p-DG algebras, then $\varphi_*, \varphi^* : D(B, \partial) \longrightarrow D(A, \partial)$

are equivalences of triangulated categories that are quasi-inverses of each other.

(3). n=p. (NH_p,∂) is acyclic. The above thm $\implies 0 \hookrightarrow NH_p$ is a quasi-isomorphism $\implies D(NH_p,\partial) \cong 0 \implies E^p = [(NH_p,\partial)] = 0$.