37 B(adjomt Functors
Biadjoint functors and  string: diggroms
First, we recall the notion of adjoint Junctors.

A par of functors (F,G) between two aategories & and B

HRe 'R

G

s said to be an cdpint par jf ¥ MeOb), Ne Obl),
Home (FM, N) = Home¢(M, GN) |

and this isomorphism is functorial in M ard N

If we set N=FM, we have an isomorphism:
Homa (FM,FM) = Homs (M. GFM),

Junctorial in M. The image of " idem picks out a distinguished
element in Home(M, GFMY. In other words , there 8 Q
2- functor c.e. natural trangformation of  functors »:
o Ids — GF
Similarly, if we set M=GN, we woud get
@: FG — Ids .
It's readily checRed that these 2-functors Sa‘ri@‘g the Coherence

relotion::
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Def. We say that (F.G) is an adjoint pair if there exist
2- functors o, @ ST, the aboue coherence condition holds.

We now tum to the diagrammatics of 2- categories and adjoint
functors. In the traditional notation. functors between categories,
natural transformations  between functors are usually depicted os:
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Insteod of using this diagrammatics, we will introduce St
diagrams , which are plonar diagrams Poincaré dual o the
traditional deépiction.
We  label categortes by regjons, functors by lines sepamating
regions, and 2- finctors by labels dividing lines: treed from
bottom T top , right to left):

8 A : ajﬂncz‘br\ F A4 —8

6 ¢ A . Q 2—functor~ vV F=F,




Then

depicts o natural trangformation:
Y: el = F3

If we use string olagrams to depict the classical diagram above,
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Poincaré dual String diagram

In this rotation, the diagrammatics of adjoint finctors can be
drawn a8 fol lows
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These are half of the oriented planar isotopy relations :
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To get the other half, we need to require (G.F) to be an
adjoint pair as well
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Def (F.G) is a biadjoint pair if there are 2-functos o ',
R.B saﬁsfging the coherence relation oepicted By the planar
isotopy relations oboue.

Thus for a biadjoint pair, any planar isotopy relation of String
diograms s allowed . ¢ STm'ng diagrams win !)

String  diagrams work for any strict 2- category «in fact, weok
2-cotegory as well). In particular, we con use it for monoioll
categories (regorded as a 2- Category with & unique object
whose morphisms are objects of the monoidal ategory, and
whose 2-morphisms are morphisms o the monoidal ategory).
As we will see in the faw‘e, it will be very useful when the
2-morphisms are giuen in terms of generators and relations.

In what follows , we will gue some first examples of ocaasions
where biagjoint functons ocour naturaly . We will restrict our
2-Category 1o be the 2-category of Al I-categories,

Extended (n+2y-d TOFT
We haue already seen the andogue of the Concept of an
extended TQFT when CaTegonj@mg Tang(e nuarionts.

Def. (Extended (ne-o TQFT). An extended (ni-d TQFT
s a 2-functor F from Cobna to Some 2-category cusually
algebroic in nature), ie. Fassigns



Closed n-manfolds
(up to diffomorphism)

O

(n+-dim'l cobordisms
with boundaries

(up to diffeomorphism

relotive to the boundwg)

Ml
Mo
(N+2) -dim‘l coborgdisms
with  corners

(up o Cliffeomorphism
relative to the boundwg)

>

Some category

(M)

Functors  between
caregonies

F (M)

TFLN)

F(Mo)

Natural trangformations
between  functors

FIN

/H\F(K)

F(No)



For ease of drawing. in what follows, we will only draw the cose

n=0.
N FIN)
WTK\J ﬂnm

No F(No)

We claim that, in an extended (n+2)-d TQAFT, any functor FIN)
hos a natural biadjoint.

Propi. Let N be an n+ diml cobordism from Mo to M. Let N¥
denote the cobordism N viewed backwards as a. cobordism from M
to Mo. Then FIN®) is biadjoint to F(N).

FIN)
F(Mo) ~ M)
FIN®)
Pr. This aomits the J%llouoing differential topological proof in terms
of pictures:

N | s Rebtie o the
NxI =K ;? boundayy. Each
rodius iS an N.
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N M N-X-
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where the boundories are N*N and MoxI respectively . Hence this
S O cobordism from MoxI to N*N. Similary, one gets by first
Squeezing MoxI into a point

N |

N M, Mi  N¥ N M, |

n

We regand these coboraisms as providing Cups and cops:

N M N-X-

The coherence relations follow geometrically from:

1?2

A\

— __N__.

The other coherence relations fo(low Similadg from pictures as Qboue,
and functoriality of F . The prop. follows -



Let's reexamine the (generalised) extended TQFT from tangle
cobordisms to bimodules. We assigned to fangles certain
(complexes of ) graded bimodules -
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One con check that
F(T) ®un -
Comp(H”—mod)CComp(Hm—mod)
F(TY®xm-
are bi-adjoint functors, up to a grading shift. (The grading shift
reflects the fact thar the functor is not quite an extended TQFT
N the sense of the def. aboue). This follows Since we used the

anonical cobordism from T*T to Idm in the cef. of tensor
products Of  bimodules:




so that the composition

& —U-w

s the identity map.

One could search for extended TGFT's in Cafegories thot admit
abundant  biadjoint functors, Examples of such incude Fukaya-
Hoer theory of symplectic manifolds (P. Seidel : functors betuween
Fukayo categories: Fuk(M), FUR(N) anise as conuolutions with
Lagrorgian Submanifolds in- Fuk(MxN)), or oderived categories of
coherent Sheaves on Colobi- Yau manifolds , or representation
theory. Later , we shall look bock ot Frobenius algebros from
the Uiew point of biadjoint functors,

Pairs Qf biodjoint functors
(Ohenever one has more than one pair ¢f biadjoint functors (F.
G). (R.Ga), ond a 2 functor »: Fi==Fa , depicted by

F.
Y

F,

one gets a unique dual V*: Ga== G, depicted by



st

i.e. topologically, we con drag the dot along the arc. V* can in
foct be defined just using cups and cops for the two pars :
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Likewise . any Y G.:== G giues rise o a unique *¥': F ==F

ST
Gl FJ.
' =
F G\'z F Gz

Thug . ideolly, we would like o drag ¥ to ¥* and drog Y™ back
to *(¥*) and get the same v back:

R G, Fa
Y = ¥ = M7
F: G?. FI G\'z F' G?-




Yy = *vH
In cose this happens, we shall say that the pars of biagjunction
s ambidextrous. Dots can be dragged dong freely on isotepic
STr‘thg aiegrams.

ORORO
In ony extended TQFT ambidextrous  biagjoint poirs exist by
defoult wia a banded uversion of the definition)

N, F(ND
N
F( /v/ ) — K — Fv)
(o) F(No)

No

Then Fo»* is just

=N

F( ) = PRV
FIN

N*

so that the ambidexterity conaition is the functorial image of
the dliffeomorphism:



N
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Ex. Think abaut the generdlised extended TGFT ¢f tangle Cobordisms
into bimodules . Does every bimodule map come from the imoge 90
o surface with boundaries and cornens ?

Thin surface TAFT reuisited,
In general, whenever we have an inclusion of k- oalgebras B<S A,
we have functors -

Ind

R
R-mod ¢ &S A-mod

- Colnd

deﬁned by e ag
nd =aA Qg -
Res=aA®a -
Coind = Homa(8A, -) .

such that
(Ind, Res), (Res, Coind)

ore odjoint pairs. Thus to get biagjoint pairs, it's natural tfo require
thot Ind = Coind.

Def - The Inclusion B< A is caled a Frobenius extension Jf



the functors Ind and Coind are isomorphic.

(See. Kodison. New Examples of Frobenius Extensions).

Incase B=k ond A i a finite diml k-ageba, B<A being
0. Frobenius extension 18 equivalent to requining that aA =aA”

(0s left A-mooules), which recovers ow~ eanlier notion of a

Frobenius algebra. (81). We will deal with this case using String
diograms now (it works equally for any Frobenius pairy.

We will olepict Ind( = Coind) | Res ﬁmcfons rE’Specﬁue(H b\(j=

7 7,
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where the shaded region denotes the category of A-mastules.
while the unshaded denotes that of k- modules, Thus the picture

7
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denotes the functor
Reselnd = kA ®A®u-
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Since this functor recovers A as the k- vector spae ReseInddk),
we will just identify A with this band. Then the adjunctions are

Z

),

which con be identified with the functors -

o . B Y

k Y A
o || |

By some further induction from/ restriction to k-modules, cne
recovers our thin surfaces and the corresponding mops of Ik -vector
spaces :
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The biadjointness of Ind. Res implies that

Y
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which in turn shows that the aboue operations (m,A. €.ty make
the k-vector space A into a Frobenius algebra.
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(Je conclude from this dliscussion that the thin surface TGFT
oescription of @ Frobenius algebma is none other than the String
diogrom oepiction of the Frobenius pair (Ind. Res).



Lostly, let's ook at endomorphisms of the biadjoint pair (Ind. Res).

We will depict them by a dot carrying certain label an endomorphism
of Ind or Res:

Such an endomorphism . say. of Ind = AA®«-, is left A-linear. Hence
(t's totaly determined by the image of 1€aA . ie. it's induced by

Ind = AA @ -

e

Ind= AA & -

the right multiplication of A by the image of 1. We will also cal
this element a. Conversely, any aeA gives nise t an endomorphism
of Ind in this fashion.

Likewise, any endomorohism of Res comes from left multiplication
by an element of A.

Then one can ask about duas of endomorphisms

a% %c

This is just the same as asking for an element CeA st. vbeA,




€(0b) = €cbe)
But recall that this is just the def of the Nakayama automorphism
z of A: VbeA, €aby=¢€lbran , so that c= .
The dual of @ under ( remains unchonged:

XY HNE fi

Then to have ambidextrous biadjuctions, we need to be able to
drog dots freely on lines:

/—\
S
a — aQ) L a ,

which means that z=ida , re. A is symmetnic,

All the oboue discussion recouers our eorlier result that the image
of a thin surfoce TQFT is @ symmetnic Frobenius algebra.



