## §12. Categorification of the Heisenberg Algebra. Biadjoint functors from finite groups

Let lk be a field. G a finite group, and H a subgroup of G. We have inclusion of group algebras <code>lk[H] \subseteq lk[G]</code>, and thus adjoint functors:

Indf - Rest - Coindf.

Moreover, under the finiteness assumption (this can be weakened to  $[G:H]<\infty$ ),  $[k[H]\subseteq k[G]$  is a Frobenius extension, so that  $[Indf]\cong Coindf$ , and [Indf] is biadjoint to [Rest]. We will use the notation  $[HG]\cong [k[G]]$  with [KG] etc.

Biadjointness allows us to apply string notation introduced in §7. We will denote Indf/Rest resp. by:

The biadjointness of them, are then given by oriented cups and caps:



which are given explicitly by maps of bimodules:



The third map is well-defined since if  $\{g_i'\}$  is another set of representative, then  $g_i' = h_i g_i$  for some  $h_i \in H$ , so that

$$\sum_{i=1}^{n} g_{i}^{i-1} \otimes g_{i}' = \sum_{i} g_{i}^{-1} h_{i}^{-1} \otimes h_{i} g_{i} = \sum_{i} g_{i}^{-1} \otimes g_{i}.$$

Furthermore, it is a (G,G)-bimodule map because  $\forall g \in G$ , gight homeometric points where  $\phi$  is a permutation of  $\{g_1,...,g_n\}$  and  $h\phi_{(i)} \in H$ . Thus

$$(\sum_{i=1}^{n} g_{i}^{-1} \otimes g_{i}) g = \sum_{i=1}^{n} g_{i}^{-1} \otimes h \varphi_{i} \otimes g \varphi_{i}$$

$$= \sum_{i=1}^{n} g_{i}^{-1} h \varphi_{i} \otimes g \varphi_{i}$$

$$= \sum_{i=1}^{n} g \varphi_{i} \otimes g \varphi_{i}$$

$$= g (\sum_{i=1}^{n} g_{i}^{-1} \otimes g_{i}).$$

The general theory in §7 gives us:

Thm. Indf., Rest are acyclic biadjoint functors under these maps.

These maps gives us the relations:

$$GH = H$$
 $HG = [G:H]G$ 

Now assume that  $H \subseteq K \subseteq G$  are two subgroups. We depict by an orientend trivalent vertex the natural transformation:

$$\text{Ind}^G \xrightarrow{\sim} \text{Ind}^G \text{Ind}^K \xrightarrow{G} H \text{, Ind}^G \text{Ind}^K \xrightarrow{\hookrightarrow} \text{Ind}^G \xrightarrow{G} H$$

Similarly, for Rest Rest = Rest,

Then we have:

$$G \stackrel{\mathsf{K}}{\longleftrightarrow} H = G \stackrel{\mathsf{H}}{\longleftrightarrow} H = G \stackrel{\mathsf{K}}{\longleftrightarrow} H$$

Next, we will give a graphical interpretation of Mackey's formula. Let  $K \subseteq G \supseteq H$  be finite subgroups of G, we can decompose G into (K,H)-double cosets  $G = \coprod_{i \in I} Kg_iH$ , so that we have decomposition of (Ik[K], Ik[H])-bimodules:

KK[G]H = DiEIKKEKgiH]H.

Each [k[kg;H] has a simple description as a (lk[k], lk[H])-bimodule:

$$k[K] \otimes k[H] \longrightarrow k[Kg_iH]$$
 $k \otimes h \longmapsto kg_ih$ 

and  $kg_ih = k'g_ih' \iff k^{-1}k' = g_ihh'^{-1}g_i^{-1} \in K \cap g_iHg_i^{-1} \triangleq L_i$ , so that we have an isomorphism of bimodules:

[k[K]⊗k[Li] k[H] <del>=</del> k[KgiH]

where Li acts on K by right multiplication, and on H by a  $g_i$ -twist":  $l \cdot h = (g_i^{-1}lg_i)h$ 

Then Mackey's formula follows:

It acquires the following graphical interpretation:

$$K \qquad G \qquad H = \sum_{i \in I} K \qquad G_{g_i^{-1}} H$$

Note that the diagrams below come from (K,H)-bimodule maps:

Problem: Investigate Mackey's theorem for systems of groups that naturally appear in geometry and number theory, such as  $Gal(\overline{\Omega}/\Omega)$  or  $\pi_1(Manifolds)$ .

## Symmetric groups

Now we will apply our general theory above to the special case of symmetric groups.

We will further simplify our notation  $Res_{n-1}^{S_{n-1}}$ . Indexing to  $R_n^{n-1}$ ,  $I_n^{n+1}$  and (bi-) modules  $s_n(S_m)s_k$  to  $n(m)_k$  etc.

In §5, we have shown for Nil-Coxeter ring that

 $NC_n(NC_{n+1})NC_n \cong NC_n \oplus (NC_n \otimes_{NC_{n-1}}NC_n)$ 

which in turn gives us

Resn+1 · Indn ≡ Idn ⊕ Indn-1 · Resn

The proof there is just a version of Mackey's formula, and we only needed the 'RII" relation:

$$= \bigvee_{\substack{i+1 \ i+2}}$$

to obtain the decomposition of bimodules above. Thus for IkiSn], we also have:

$$n(n+1)n \cong n(n)n \oplus (n-1n)$$

so that we also have:

$$R_{n+1}^{n} \circ I_{n}^{n+1} \cong Id_{n} \oplus I_{n-1}^{n} \circ R_{n}^{n-1}$$
.

Next, notice that the functor  $I^2=I_{n+1}^{n+2}\circ I_n^{n+1}$  admits an endomorphism coming from the (n+2,n)-bimodule map

where  $S_{n+1} = (n+1, n+2)$ . We will denote this endomorphism by:



Then we have the relations:

which follows from the corresponding relations in  $S_n$ . Similarly,  $R^2 = R_{n+2}^{n+1} \circ R_n^n$  has as an endomorphism  $S_{n+1}$ :



which we depict as:



Using cups and caps we can produce crossings between R and I as well:

$$\begin{array}{c} R & I \\ I & R \end{array} \triangleq \begin{array}{c} R & I \\ I & R \end{array}$$
 etc.

By the discussion above, we have,

which is encoded in  $RI \cong IR \oplus Id$  as follows:



and the relations (exercise):

These are relations that do not depend on. Some relations, however, do depend on n. For instance,

$$(n-1)^{\nu}$$
  $n = n \cdot n$ 

The monoidal category H

Now we define an abstract monoidal Ik-linear category H'.

Objects of H' are defined to be finite direct sums of tensor products of I or R:

Morphisms of H' between objects are Ik-linear combinations of oriented string diagrams, with at most simple crossings:



The morphisms are required to satisfy istopies relative to boundaries and local relations modeled on those relations above for symmetric groups which do not depend on n:

One can check that these relations imply:

which further implies that

holds with arbitrary orientation.

The right curl doesn't simplify, and it will be convenient to relabel it as a dot:

Moreover, clockwise circles carrying dots do not simplify:

$$k \longrightarrow \triangleq k$$

The dot is related to the Jucy-Murphy elements in Ik[Sn] as follows.

Lemma. Fix an  $n \in \mathbb{N}$ , we have:

$$n+1$$
  $n=\sum_{i=1}^{n} (i.n+1) \triangleq J_n$ 

the n-th Jucy-Murphy elements.

Pf: An easy computation by decomposing the right curl into a cup, a crossing, and a cap:



We recall that Jucy-Murphy elements commute with each other. For each  $n \in \mathbb{N}$ ,  $J_0 = 0$ ,  $J_1 = (12)$ , ...,  $J_{n-1}$  form a maximal commutative subalgebra of IkESnI if charIk = 0. The commutativity of these

elements now becomes planar isotopy relations:

Rmk: Jucy-Murphy elements play very important roles in the representation theory of symmetric groups. See A. Okounkov, A. Vershik, A New Approach to the Representation Theory of the Symmetric Groups.

The following lemma is an easy consequence of the defining relations of 91':

Lemma. In H', we have,

This relation, together with all the upward pointing relations, reminds us of the notion of the degenerate affine Hecke algebra:

Def. (Degenerate AHA on n-strands DHn). DHn is the lk-linear diagrammatic algebra on n strands (like NCn) carrying dots subject to the local relations:

Notice that lk[Sn] naturally embeds into DHn as a subalgebra. Moreover, we have a retraction by assigning a dot on the k-th strand the k-th Jucy-Murphy element:

$$\begin{array}{ccc}
DHn & \longrightarrow & \mathbb{k}\mathbb{E}S_{n}\mathbb{I} \\
\uparrow \dots \uparrow & \uparrow \dots \uparrow & \longmapsto & \mathbb{J}_{k}
\end{array}$$

Notice that

Now we will state the first main result about 41'. Before that, we state the following lemma, which followes from an induction argument.

Lemma. The conter-clockwise circle carrying dots can be reduced to polynomial combinations of clockwise circles with dots on them.

For instance,

$$4 \bigcirc = 2 \bigcirc + \bigcirc \bigcirc$$

Thm. (1).  $End_{H'}(1_{H'}) \cong Ik[C_0, C_1, C_2, \cdots]$ , where

In other words, this is saying that any closed diagram in H' can be reduced to linear combinations of pictures with only clockwise circles with dots.

(2).  $\text{End}_{H'}(I^n) \cong DH_n \otimes \text{End}_{H'}(I_{H'})$ .

In other words, any pictures going from n bottom I's to n top I's can be reduced to linear combinations of elements of  $DH_n$  with some circles attached on their right hand side.



Notice that by turning everything above upside-down we get the analogous results for  $\mathbb{R}^n$ .

For the proof, see M. Khovanov, Heisenberg algebra and a graphical calculus.

Def. The category H is defined to be the Karoubi envelope of H'.

H is a lk-linear, monoidal category since H' is. By the thm above,  $lk[S_n]\subseteq DH^n$  acts on  $I^n(R^n)\in Ob(H')$ . Let  $e^{\frac{1}{n}}(e^{\frac{1}{n}})$  be the complete symmetrizer (anti-symmetrizer) in  $lk[S_n]$  (char lk=0), and define  $A_n\triangleq (I^n,e^{\frac{1}{n}})$ ,  $B_n=(R^n,e^{\frac{1}{n}})\in Ob(H')$ .

Prop. We have in 4 that

- (1).  $A_0 = B_0 = Id$   $A_n = B_n = 0$  if n < 0.
- (2).  $RI \cong IR \oplus Id$
- (3). An Am = Am An, BnBm = BmBn
- (4).  $BmAn \cong AnBm \oplus An-1Bm-1$

Hence Ko(H) is a ring, in which

 $[B_m] \cdot [A_n] = [A_n][B_m] + [A_{n-1}][B_{m-1}]$ 

These elements  $[A_n]$ ,  $[B_n]$  can be shown to generate the Heisenberg algebra

 $H= |k\langle P_n, g_n\rangle_{n\geq 0}/(|P_nP_m=P_mP_n, g_ng_m=g_mg_n, |P_ng_m=g_mP_n+\delta_{nm})$ 

Thm There is an injection

7: H - Ko(H)

Conjecture: 2 is an isomorphism.

The proofs can be found in the above mentioned paper.

Rmk: There is another categorification of H by Cautis-Licata, where they essentially used the rings  $lk[S_n] \times T^{sn}$ , where  $T = \Lambda^2 \mathbb{C}^2 \times lk[G]$ , and G is a finite subgroup of SU(2). The algebra T describes the derived categories of coherent sheaves on some Nakajima quiver varieties (Kapranov).