33. Categonification of the Jones Polynomial

A lnk in R®or S is a fnu’fe collection @D smoothly embedoled
circles . Via o deep result sfating that any smooth structure of
a smooth manifold has a unique” piecewise linear Structure , Links
admit very combinatorial descriptions by their projections  to

R*: @

Two Uik projections onto IR* give isotopic links iff they are
related via o finite number of isotopies and  Keidemeisten
moues RL-RI :

ol B KR

RI RI

The Kouffmon bracket
The Kouffman bracket is an assgnment from IR* link projections
to the ring of Laurent polynomials Zr0.071:
¢ > :Link diagroms — Zta.01,
subject to the locol relation :

O = a0 -8 ()

and the normalization condition that



(O = aa

This is amost a (inkR inuariant:

RI:
(Pr=a Q- ad

- a—'(a<§> + o <\Q> ) + a4 a{Q} L a <> <> )
= (-0*- 07 <X> . a*(%} +az<%> +<> <>

4

RIL: (using the inuariance uncer RI).

(= O+ alX> =/ y+ad )

Or=a Y0y +a =0l /3 - Y

However, it's not invariont under RI:
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Thus it meons that the Kaufjman bracket is an inuariant
of unoriented framed links.

To obtoin an invariant of wfmmed links out of < »,
we hove to put orientations on links to differentiate the
two ways of resolung RI. and balonce the powers 0
coming from them . Infroduce %l Crossings:

\/\ L crossing X -1 crossing

ond define the writhe of an oriented link projection to be
WO(D) £ # (+1 (ros8ing ) - # (-1 Crossing)



The computation above Shows that we may introouce:

Def. The Kauffman polynomial of an oriented Unk L in IR® or
8 is the Laurent polynomial

KIL) 2 (-03 D> € Zra.o.

Ex. Check that K(L) satisfies the skein relation:

921<(X) —9’2K<\/\) =<9-9")l<(§ C) %)

where 4=-0"

(%) says thot the Kauffmon polynomial agrees with the celebrated
oriertted Link - polynomial inuariant dliscovered by Jones when Stuoying
von Neumenn olgebros. It's Charactered by the Skein  relation:

3 <) =973y = a-n3() D). e

We also fix the normalization condition of the Jones polynomial:
KIO) = a+a"

There are also variations of the Jones paynomiol , defined by
replacing 4** on the left hand Sde of the above formula by 4™,
Oenoted Pn(Q) € 209.971:

Q”Pn(\/\) —9‘”%(%) =(9-9") Pn(j ()

Po is the Alexander polynomial . Pi=l . Pa is the Jones polynomial .



For nz2. the polynomial becomes harder to compute (#P) while
the Alexander polynomial can be computed in polynomial time (P),

Rmk: About the normalization.

Note that, Since
@ : L

by the formula. above. we have,

q" Pn( )_g—npn('@) Z(Q‘Q_')pn( O)
— 9.”Pn(> _g—npn() 2(9‘9—')pn(©)
= () O) = 55 P))

This soys that. if we wont Pn to be a tensor functor, we'd
better set -

pn(O) = %‘:Qi—u
Notice that (@"-97")/¢Q-9") = @™ +9"+-+3™" js the ghiffed
Poincare polynomial 1+ t+ -+ "™ of CP™. The occurrence of CP™
will be explained later. These polynomials in @ and t are also

reféred to as the quantum integers , since they are “deformations’
of the usual infeger n.

Localizing the Jones polynomial and Kauffman brocket



Before Ca@gorg@mg the Jones po{gnomtal we need a local or relative

description of the Jones polynomiol of links with fixed boundory
points .

We regord links with some fixed boundary points as living inside
the closed unit 3-boll DY with all its boundary points fixed on
3D'=8> Similar as before. these links admit combinatorial descrptions
uia. projecting them onto the unit 2- sk, and boundary points lying

on 3D°=8
[

L

The Kauﬂmann bracket is Olefned J‘br* these (inks b\g Talong
all possible resolutions @0 crossings . with appropriate: coefficients
inserted accordmg to %), and closed circles euvaluated to be -02-02

‘ A DOSSIHE a a2)2
resolutlon

It follows from this Oefinition that the Kauffmon brocket <L> of
a lnk projection L on D is a Laurent polynomial in Zta.a'3.
Notice that links with 2n boundary points  have all their possible
resolutions , with circles evaluated , in 1-1 bijection with matchings
of the boundary points -



some  possible matchings

x. Prove that the number of all possible matchings as abowe of
2n points on S' is the Gatalan number ().

Thus by the exercise. <L> tokes udue in the fnee 200,077 - module
of rank N=75r(n), with <matchings > as basis. e oenote this
moolule by N

Introduce the following trace pairing on IM. It's the unique Z00.071

bilinear map extended  from pairing of basis elements , which is
defined by Joining - the  corresponding bounolory points. and eualuating

cirles so obtained
« : leUO.(UO.ﬁnQ g (_a?-_a~2)2
&0

n

D0

Another equivalent way of representing the same datum (IV. tr) is
to breok the symmetry of this circle: We put the 2n bounoary
points on 2 parllel (ine segments . n mony points on each. Each
point corresponds to @ fixed point on the Circle:



and drow the matehings accordinlﬂ:

(Ohot we gain from this point of view is an algebra structure on I,
whose muttiplication 18 given by sTacsznQ pictures , and ewduating
circles :

Eg Zﬂé %

_U_U_ IS o
= "a."a- )

@ aa-

The trace form now is giuen by connecting comesponding points
on the 2 boundary Segments. and euauating circles:



N
Ir ) ) = = (-02-07)
Lo

This algebra is no otfer than the foamous Temperley-Lieb algebra,
which Jones used to define his polynomial .

Dgf. (Temperley-Lieb algebra. TLn). For each n2o, TLn ig the
200,071 algebra. generated by Ui, i=1.--,n-, modulo relations:
. W= - -aHu
(2. Uildis Ui = Ui
3. Uil = YjUi lt‘—J‘l>l

Using the grophical colculus aboue.

-\
AW

| 2.l ftl-n= N

Ui =

Then (1) -(3) above become eualuation of circles and iISotopy relations
on the graphs.
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AX=11EA

The lemperley - Lieb algebra inherits the troce J%rm defined above
by closing the diagrams - v f'e Tl

Tr(f)é<@>

QJ// > = (-a-ah"
So how do we get the Jones polynomial out of Tl ? We use the
foct that every lnk con be obtained as the closure of an element

of the bradl group Bra Jor some n. Then to the genenators,
name@. local oriented Crossings. we assign:

X — (—(f)(a><+a"f ‘)

\/\ — (—a's)(a"><+af ‘)

One can then check that the Jones polynomial of the broia
closure 18 gven by Takmg troce Qf the element obtained
accorolt'ng to this assignment in Tla.

Note that :

T (1) = <



Rmk: The two varioble Laurent polynomial invoriant of links
HOMFLYPT polynomial can be similarly d@‘?ned with TLn reploced
by the Hecke algebra Hn.

(ategorificotion in general

The moral of categorification is to congistently Convert integers
into  vector Spaces [ free abelian groups.

For instonce. to natural numbers. we an assign to them  vector
spaces ! free abelian groups with the comesponding dim/ rank (which
IS unique up to (somorphism, but not canonical iSomorphism ') Then,
the operations on integers are upgroded into -

IN Cotegorification

neIN | Vydimv/my, =n

n+m Vo @ Wm
n-m Vn ® Wm
n-m ?

To categorify “n-m". we are Jorced to introduce complexes of
vector spaces or free abelian groups , whese Euler charactenistic
s the altemating sum of dim/ rank:

K (0= Vo wWwm—0)=n-m,
Moreover. tensor products of Complexes an be defined :

Vo= VS i)

W (W DR — )
Then the tensor product of V' and W is the complex T



T2 BrezVie W
whose differential is given by:
AUe®wWi) =(duh ®wi + (- U dw.
It dlso satisfies that:
XV @W) =XV X(W)
In joct, it's well-knawn that the category of  (complexes) ¢f

vector spaces/ free abelion groups iS an odditive, symmetric
monoidal categery , whose Grrothendlieck ring is 2.

Categorification of the Jones polynomial
We slightly change notation from above , and define the
Kouffman bracket by o medifiaation of ¢!

O = -0 () w

(morally . 0=A4). And we normalize it by:
(O = g+a7

For an orierted link dicgram D, we oenote bﬁ X(D) the number

of negative crossings on it. ond Y@ the numper of positive
Crossings :

'X(D)=4¢(X> YD)= #(\/\)

The Kauffman polynomial is modified as:
KIDY2 (-1)* @79 Dy

As discussed aboue, what we would like to do here is to lift



these polynontials with integer coefficientts . in o “Consistent” way.
into complexes of vector spaces or free abelian groups. So that
when we take the Euler chamcteristic of it. we recover KD).
Now in the presence of 2. what we shoud Lift each link to is
0. bigradeol homology " theory of links  HY(D). so that when taking
(ts graded Euler chamctenistic by collapsing the homological grasing,
we could recover K(D): _ |

KD) = > 0j(-1y' @ dmHY(D)
Here “homology” theory will in fact be complexes. which we Rnow
is more fundamental than homology groups . So what we will do
is to assign to each D a chain complex of graded vector spaces /

free abelion groups.

=.0. By the normalization requrement, the most cbuious graded
choin complex for O s

>
>
o

so that grdmA = @+9™

Here we need to say more about the word * congistent™, which is
in fact a requirement of functoriality. In the presence of  higher
structures in the Symmetric monoidal category . namely . morphisms



between complexes of graded modules, we Should naturally expect
to have (iftings @" cobordisms to these morphisms

DcR? C)
Clw /CCN)- morphism of
Do €IR? chain complexes

C(Do)

Thug from §1. we know that we must assign to the unknot a
commutative Frobenius olgebra ¢ differenttiol groded Frobenius algebray

Lo/ =y

-y,
Vaci Ve v

These cobordisms of uarious copies of
the unknot (S 1R lie in IRXICIR%*I

Here , the obuious way 18 10 moke
A=20"@® 29 = ZxI/ x>y =HIP'),
the (atter ring has the usual Frobenius Structure:

/_/;O_\_ / R m“{l-l=l X=X
/w X*= 0




/‘@—7 N £. { Ey=0

EX) = |
/o‘ Q/

S —s A;{A(l)=l®’)(+’)(®l
/S / A = XX

/O/ — (] —s |

Notice that these maps are not homogeneous : our 1€A sits in
Q-cleg -1, but A =1@x+x® Sits in Q-deg I, (1) Sits in Q-deg
-1 However, observe that the topological Euler charocteristic

Iff we require these abordisms to toke info account of the grading
shift b\zj Q7% here AS) is the topolegical  Euler chamcteristic
of the cobordism surface, the @-deg match now -

/ i\ / — : )
Veiar, s

ZX®X 9"
A®? = | Zxel @ Ziex qQ°
Z|®| g

1O




Where we denote g-shift by {1}, in contrast with homological
degree shift L11.

E. 9. Lets look at the categorified uersion of the equation.

()= (8 - ()

First of all, we have the assignement

<8> — A®2

<8> —~ A

The negative sign in the formula indlicates thot these modules
should it in olifferent homological degrees. As the coefficient of
the first foctor is positive, we ploce it in homological degree o,
while the second term in homological Oegree 1. (This will be our
convention in the future as well .) The 4" shoud correspond to
Q@ degree shift by -i:
0 — A% — Af-l—o0
But what mop should we put in the middle ? Recall that the
multiplication mf1} is o @-deq | map between A®* and A. Thus
we moy take this map to be m.



The homolagy of this complex s easy to Compute:
0O — A®2—m—> A{—l}—)O

Ho= Z(I®%X-X®1) ® Z X®X
e

deg o d,egz
Hy =0
which up to a grading Sh{ﬂ iS iSomorphic to A (which will be
token care of once we assign orientations to links and dleal
with KMD)). This is what we wanted Since the “Rink" aboue
IS just the cincle.

The opposite kink an be similorly computed using the comultiplication:

SRR IE==Ne

4, A%y

To procede. we recall the *cone” construction from homological algebra
(See Gelfond & Manin, Methods of homological algebm.).

Let f + M"— N be & map @0 chain complexes on some additive
category. The cone of f'. dencted C(fy', is the complex

CHY=MLT &N
whose differential is given by

deepr = (dmm' f)

o dN
where dM'm:-dM'.

The cone construction aliways gives rise to a long exact sequence



in cohomo(ogg :
w = HI(M) — HIIN) — H(CHy — HH M) — -
= X(CHFH) = XN - XM
The cone construction works ouver the coteqories Kom(s4), Comp(4)
and D) (for D) to be defined, S has to be abelian).

The process of the example above mn be generalized immediately
to any oriented (inR diagram with n Crossings. First of all. we
temporarily forget about the orentation on the link , ond toke

(ts complete resolution a8 beﬁre. We shall always toke the (local)
resolution of a crossing to te:

X

/
\ (we moy regard these
\__/ % resolutions a8 objects in
— —— Slﬁ!ﬂg in a)”‘espondmg

0 resolution | resolution  homological degrees )

The n crossings after resolution become 2" resolution diggrams, each

consisting 0. certain rumper of circles . This is better seen through
an exomple:

=g. The Hopf link.



It's resolution is:
Here (ooailg we

Q@ O@

Now e apply the orented TAFT we constructed by assigning to

0. Circle the Frobenius olgebra A (technicall Yy we need to onent
each circle to apply the TQFT), assigning to meming of circles

the multiplication and separating c:‘rc(es the comultiplication :

A% M, AL

LI
Ay —2— A%y

Notice that terms at two ends Qf one armow have their numbers
of copies of A differ by 1. since arrows comespond to either
merging two circles into one or duu:dung one circle into o,

The above diogrom of abelian groups obuiously commutes. This
s olso true in gereral. This is becuse. ojfferent paths of
resolutions give far apart local cobordisms done in ojfferent
order, which are in fact the same cobordism, so that functonial ity

of TQFT soys that the diagram is Commutative.



To et a complex out (f the commutative diagrom , we
need to insert Some negative Signs in appropriate places. Here
we con borrow the Standard convention from homological algebma
by regarding the complex aS constructed by taking ® products
of the formal local complexes” of resolutions :

(2N

In the previcus example, we just take:
A% T A

)L

Ay —2 A%y

Finally, we form the total complex of the “tensor product” complex.
(This is Just the cone construction!) It's dencted C'(D) of the
om‘ginal onented link projection D. By this construction. we
Clearly have :

KCDN=<D>.
The complex C(D) is then constructed by toking into account Signs
and degree shifts in the Kauffmon polynomial.

CDYE CD)LADI {2XD)-YDH)

which satisfies



X(C(DY) = KD,

Thm. C(D) in the homotopy category of graded fhee abelian
groups is an inuariant of oriented  links.

We will sketch the proof Qf the theorem in the jbl(oooing. What
we will show is that the Reidemeister moves give rise to
homotopic complexes. The theorem implies that the homology of
CD) :
HD) = @ij HY(D)
is an oriented link inuariant , and
K(D) =X(C(D))
= X(HD)
= X ijez (- @ rankHY(D).

Sketch of proof of theorem
RI. We need to check that

cEy= (M) = c())

in Comp(gr-Ab).

We shall show the first isomorphism. (e forget about the
orientation momerttanly Since it only provides degree and grading
shifts for C(). Then

CD) = Cone( K = (e
(o — A®CIM 5 CLN) —s o)



But m decomposes:
Z1® C(N) 2> g

e ARCIM= @ T o)

ZXC(N) Ixm/\/ﬁx-a

We con split the sequence a8 a direct sum ¢f a contmactible
complex and a. copy of ZxX®C(N), as follows: we toke
elements X®a and twist them by -1@xa € 219N, The
image of these elements x@a- 1@%a e A®C(N) under m
s 0, and they constitute Q copy of Z%x®C(M). Together with
Z1® C(N). they span A®C(N) and thus the complex i
iSomorphic to

0 — ZI® C(N) — ClN) — o0

®

0 — Zx%®C(N) — 0o

The top subcomplex being cbuiously contractible.
Thus in Comp(gr.Ab).

ctQy=cl M.

(Ohen we toke orientation back into account, we get:

C(,Q)=C'(,QH-\} (XD)=0, YD) =1)

=C([))
= (). .



RIL. Now we check one g” the oriented RI moves, and the

rest iS Similar.
C(D\) = C(T T)

We again ignore the orientations finst, and take the resolution of
the (eft hand Side -

\—

O
el

5{ DOI

s

Dio

Doo

Notice that Dio is the same as the right hand Side . Thus we will 1y
to Show that after opplying C', the whole complex is iSomorphic to
a direct sum of C'Dw) and a contractible complex . Also note
that Deo is the same 0s Du whie Do is just Deo digjoint union
with @ circle . Hence,

CX\RZ1® CTX) R 2

IS
&~ C’(\,<)®A{-ﬁ\m
CCX) D o CCx)\ 12
- CCl gy~ 2

giues the complex .
o—s C VAR 2uC ()@ 2x0C ) 0C(| NIACUXY—0



Since A s given by

A
51 O
—
’ \ ( \
‘e _~- ~_.'

ARl > QA= ARI®X+A® X

A®X > O®AX =0®%X@X
we see that (A, B) () =t@XGAM®1® Bhe CXYRADC(I )
is an injective map and so that

0 — CX) “B Inap —
S|

CtX)
S o subcomplex of the total complex. Next. the multiplication map m
induces an isomorphism m: COX)® 21 — CCOX) . Lostly, we twist”
C'(l 1Y to be the isomorphic Submodule {(atr@rtyte C'tl 1)} so
that it mops t0 0 under (m, -y, We hove thus obtained a direct

sum olecomposition gf the total complex :

O—-*C( ) 2 C )—>O
@ N
0 —CI) 9 012)—> o
@

o—C'(| Y{y— o,
ﬁ—/

homological clegree |

where all but the last direct summand are contractoble. 03 desired.
Taking orientartion back into account , We have XM)=YD)=1. Hence

C(D y = (CCL Wy Dady = C( H=C(T T) a @C i



Rmk: The above method is also used in dgebraic geometry . symplectic
geometry. and geometric representation Theory When people are
constructing braid group actions on some cafegory using the 8o
Qlled * sphericol  objects”.

RI. Lostly we sketch the proof of

C((\KV;C(\/:\M

The same tNek qf resoluing the crossings as we did at the beginning
of the section to deal with Kauffman brocket con be applied here
0s well. We shall only work out C(DY's for the urorented case.
The oriented case follbws by a degree/sign shift countting,

For the left hand side. we resdue the upper left crossing first

VAN

= Cone ( C'( Z)—%C'( %))E-'] (oy RI)

Ore similorly checks that the rignt hond side, qffer resoluing the
lower right Crossing . becomes:

Thus



C'(\/\>)=Cone(C'(\/))—%C’(\/)?))E—IJ
gCone(C'(/)—ﬁC'(X))E-'J
2 \

Ore can then check that the two maps :

C(/)——>C(V

an be token to be the same and the result follows.
o of RL,

Rmk: One con toke the full resolution of the above and find
out that in both cases the complexes are of the form.

V U

et )——>C'(ﬂ[\\

0 — D > C ‘ ‘ ‘)
v

C1 A\ ) — C 1
It's on interesting phenomenon that all elements of the Temperley--
Lieb algebra TLs appear in the resolution of
(\/
\

x. Check if all elements of TLa appear in the resolution of

K



Application - Tait conjecture

Recall that flom aur construction, the compiex C(D) of graded
chelian groups for any link projection diagem D is obtained

by tensoring Complexes ~ coming from O and 1 resolutions
crossings. The construction  immediately  implies that | C(D)

IS o bounded complex whose non-zero terms Sit in homologl‘ca(
degrees  between 0 and the total number of crossings in D, i.e.
0. XD+yD 3. It plows that

D)= CID) XD {2xD)-ydt € Gomp™ ™™ ¥ gr by

By the thm above. the homology of (D) is an oriented (ink
nuariant. Thus if the homology HIL) of an oniented link L
has non-trivial terms H™ . H™ for Some m. ms € Zzo,

H™(L) M)

o}

then any diagram D of L cannot have less than m. negative
crossings and [ess than m. positive Crossings.

Cor. XD) = m=max{ Rl HR(L) #0}
Yo 2 ma=max{4| HYL) 0} o

The smallest number of total crossings of projection diagrams

of a lnk L is called its crossing number (L), The  dliscussion

above gues a lower bound for Y to be mitma. In genemd

it's an open conjecture that. for ony two links K andl L,
CK#L) = CK)Y+ CL).



('¢" s Tr‘l'ufal(g true ).

As an opplication of the homdogy theory . we give a new
pmg” qf the Tait conjecture Stating that any miniml alternating
diogram of L is minimal for L (e the number of Crossings
atiains  ccLy). We reaoll the definitions inuolued -

Def. Alink L is cdled aternating i all its crossings can be
rearronged together 1o [ooR (ike -

=K

[t's Rnown that links with cLi< ¥ are dternating.

A projection diagram for an atenating Unk L is called minimal
dlterrating i it’s altemating ond hos the least number oOf
Crossings in all the altemating projections of L.

/
~N |
0w R



A ocon be
pr reguced G E

Tre Tait conjecture ¢ theorem) States that a minimal alterating
diggram for L is minimal ameng all its projection diagrams

To prove the conjecture. we review Some bosic focts about
H(L).

First off. observe that f H™ L)y 0, then in QD)

O —> C-X(D>(D) _d_) C"KCD)'H(D) -
d 8 not injective.

Eg. Consider the meﬁz‘( knot -

S ) s

Ore con see that the (eﬁ end 95 C(D) looks likes
0 — AL @ AT

ohich comes from the  upper left comer of the complete resolution:

_—_) @ A®S_Mia s
- /|
GO



where My is the multipication coming ffom merging the i, circles

S \S Mae: ARA®A — A®A
O 5 O X®Y®Z > X-Y®Z

Thus the element %® lies in the kernel of
d=(Ma.ms. ms) : AT — @A

since X*=o0.

However . this example is not the geneml (ose: It's not true

that if C77(D)= A®R where R= # Circles in the o- resolution
of al crossings . then X lies in the kemel of the differential
For instane, we have the following:

E.Q. The trivial Rnot

(With the above orientation, it has two negative Crossings SO
that the left most tem in (D) s C™(D). Bur we know thot
CD) = A, the free abelion group A sitting in homological deg.
0. Thus there an be no H*D). Ore con evsily check that
d: CHDY—C(D) is injective. For instance, we look at a
component of d:



QD D e

a®b > AQ®b |

which is  clearly injective.

The injective map A appeared Since the number of cirdes on
the complete o - resolution 18 less than that of one of its

ne@hboring resolution, which is obtained by replacing one Qf
the’ 0-resolutions by @ I- resolution. This motiuates -

Def. (Adeguete  diagrams )

ay. A linR projection diagram is  alled - oadequete i its
complete O - resolution has R-circles, ond if we replace any
one of the O-resolutions by @ I-resolution we get R-i Circles.

2. A link projection diagram is @alled + adeguete if it
complete | - resolution has R-circles . and if we replace any
one of the |-resolutions by @ o-resolution we get k-1 circles,

@). A link projection diagram is alled odequete if it's both
1 oond T -" odequete.

The jollowing projection of the trefoil knot is adequete:

50



@ (}@ The trefoil Rnot is also

+ odequete. The term
(®| couldn't be hit under

1~
@9 2 @O Aa the differential d=<s A

It follows from our discussion that if D is an adequete
diagram , then H™(L)#0, H¥™(L) =0, 0 that

ClL) = KD +y®) = # of crossings in D,
ond D is minimal
Now the Tait conjecture follows easily from
=x. Show that any minimal - alternating  diagram is - adequete.
Rmk: The Tait conjecture aso follows from a reduced uersion

of Khouanou homology . The alternating links have the reduced
homology Complex Sitting anﬁ—an‘agonall\(j in the g-ceg/ hom

deg plare -
N YD)

(D) N

SO that one &ees dfrecﬂﬁ that oll terms Survie in homo[ogg.



The reduced complex con be viewed as a aategonification of
the Jones polynomial Subject to the normalization condlition
that J(unknot) =1. This is done by fixing a marked poirt
on o (inR diogrom D ond when constructing C(D) we et
any circle in the complete resolution conrat‘ning that marked
point to be Z instead of A. Alternatively,
CD) = (D)®n Z ~

with xe A acting trvially on 2. Thus C(D) can be constructed
by tensoring C(O) over the s.e.s:

O—4X —A — Z—0

= 0 — o — @ — CoNt —o



