313. Hopf Algebras
We will be using G. Kuperberg's grophical notation. Two bosic

references are his popers:
[11. G. Kuperbery, Inuolutory Hopf" Algebras and 3-Manifold Inuaniarts

[21. G. Kuperberg, Non-inuolutory Hopf Algebros and 3-Monifold
Inuarionts

Algebras and  coalgebras
We will use a graphical netation to reaall their agnmm‘ons.

Def. A k-dgebra over a ground feld k is a k-vector space

A “equipped with linear maps m, i :
A A

| ]
/ \ lk
A A
Sa’ﬂefgmg the axioms :

0, Assoo‘aﬂuitg:

2y, Unit:
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We will stop writing A on the ends in what followes. Note that
associativity allows us o define unambigously

L = AN
e
/A N A
Qeuersmg all the arrows, we abtain the agﬁnm'on gf Q coalgebra.

Def. A k-lineor codgebra C is . k-vertor space C - equipped

with linear Maps
N\
T

—>>m

saﬁg”g:‘ng the oxioms:
M, Co-assocz'aﬁu[@

N A4
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We will also deﬁne the unambigous notation:

VW%
T

There is an obuious dualitg between fma‘te dimensional algebras ano
coalgebras by toking the vector Space duals. This iS, however, not
the cose when dmiA =w. e onlg hove :

Co- olgebras ——— Algebras
C — c*

(C4CeC) — ((Cecy £ o)
Yo /'fbg restniction)

(CE Ky — (k5

Problem occurs  when we duwdize m: ARA — A .
m*: AY—— (AeAY* 2 ARA



People usually bypass the problem by restricting to the subspace
A’ € A™ (restricted dualy , which 78 dgﬁned by the conaition that

A’ = {oe A% mpe A*@ A%

Ore con show that A° consists of ¢ s ¢ vanishes on a finite
codim'{ ideal @C I.ond A®A =(ARAY". Hence mi@) e APQA°
i peA”

=g, nxn-motrix coclgedra.
This is the vector Space ool of the usual nxn-matrix algebra.
Thus C= lk[Cﬂ;f:.,

A(Cy) = Cir® Cj

E(CU')= EU'

E.g. Let g be a Lie dgebra, and A= Uy 1t8 universal enveloping
algebra. 1t restricted ool

A= Bier (Vi @ V)

where 1 i o complete set of isomorphism closses of finite dlim
0y representation . A° is equipped with the direct Sum coalgebro
structure of each matmix codlgebra Vi® VY

Rmk: Ang coalgebra 18 Q. union gf its \ﬁrm“e dimengionol  Sub-
conlgebras - Take any ce C,

AC) = Z Cen @ Coy
(Sweedler's notation). One can check that the subspace Spanned
by <Cer, Cv> IS Q. SUb-Coalgeoro.



Next, we introduce a dual categorical notion of a mogle (rep.)
ouer an olgebro.

Def. Let C te o coolgebra. A left comodule V over C is a
k- vector space V' equipped with a linear map:

C

N

such that:

AN N

We list some standard focts about the Qategory of comodules over
0. coalgebra €+ C- Comod:

a. C-lomod is an abelion cafegory wWhich admits frj?nrte direct
sums ¢ not nessanly z‘@?m‘re direct products ).

@. C itself’ is an injective C- omodule.

@. Any comodule embeds into an injective: comoolule cenoygh
njectives). But there IS not dways enough projectives.

4. Similor as that any ﬁnffe dimensional algebra. A hoas a
Smollest Morita. equialent algebra Abase, ony: coalgebra € has
a smallest co-Monta equivalent coalgebm Ctase, Whose simple



subcoalgebras are duals gf division algebros.

=.g. Another important fomily cf coolgebras are provided by
Hx(X. k)
homology groups of topological Spaces, which are also gradedl

If we combine the notions of algebra and coalgebma, we obtain
that of a bialgebra.

Def A bidlgebm B 18 a k- vector space equipped with k-linear
compatible algebra and coalgebra Structures. In other words,
(A.€) are algebra homomorphisms  ( this tums out to be
equivalent to requiring  (M.1) to coalgebra. homomorphisms ).
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=g If G is a semgroup, the semigroup algebro. kIGI becomes a



bidgebra. by setting, v ge G,
A =g®gq,
EQ) =1.

The cef. Qf o Hopf" algebra. is modeled on' the aboue example when
G s a goup so that ge G can be inverted.

Dgf. A Hopf algebra H is o k-bialgebro. equipped with on
onti - homomorphism S H — H% .
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i ) ngzs éS/ ,\S
20 N

QSTQ

It turns out that these two axioms also imply that S is a codlgebm
anti - homomorphism.

From now on, we will focus on Hopf™ algebros.



Hopf algebros
let (H,m.(,a,g,8) bea Hopf algebra. over k.

Lemma. . The following endomorphism of H®* ccalled the lager:

[T

A——>M

T

odmits o 2-Sided inverse:

A—>>S—m

Pf: We prove one side, and the other Side is Similar.

A A / 1
b T T 1A

_ S _ N [ B
T T 0 T - %) = | Af T -
A——M A—A->M LA Ja)
(O 1 1

Now we will start talking about the representation category of H.
Let. V, W be two H-modules. e have:
M, VO®W becomes an H-moadule via:

H -2 HOH (Y VOW

. The ground ﬁe{d k becomes an H-module via €, which we
denote by k Vek=koy=V



(). We have interal Hom gc H-modules, i.e. Homik(\V, W) i8S
an H-module as jbl(ows, VheH,fe Homi (V. W), xeV,

(hf)(U) £ > hcn : (f( Schiay-uY) .

In particular, V* becomes an H-module by v fe \V/*, heH , veV,
ch-Hrew = feShruy.

In summary, the aategory H-mod is @ k-linear monoiol category
with internal Hom's. Furthermore, notice thot gf S s invertible,
we con oefine another dual *V for H using S ingtead of §

in 3. Then it's easy o see that *V=V* iff aueH st
Sthr=uhu™, vheH. (e say in this case that H is reflexive
cor ngt'd) since we are allowed to bend 1dv: V—V in two
WOYS:

Rmk: Similorly, one con define the category ¢of comodles ouer H.
The tensor product of comodules s defined using multiplication

Of H instead:
v H®V } = Vow— VRHAWRH % VRWSH
W— HQW

If His finite aimensional, the comoalle category is isomorphic
o H*-mod.



From now on, we will be working with j?‘nnze gimensional  Hopf
Agebros , 80 that we aan bend armows  freely.

Prop. 2. Let V be any H-module. Then
HeVe HI™W = HeV

where V' denotes the uector space V with trivial H- module Structure
Pf. We will show that, the following mop is an H- module map:

r—Db——1xT

Indeed, we have,

H H H
//@V |
" T——) = ( A/me = ﬁ—%
1 T el
4 H H H H H

Moreouer, this is inuertible for the same reason as in lemma | o
Cor. 3. P@V is a projective H-module if P is 0

Ex. let C be a coalgebra. Then I®V 18 an injective comodule
whenever 1 (8.



Def (Integrols for Hopf™ dgebras).
We' oefine o right integral e H* cresp. left integral pe H¥, night
cointegrel € € H. left cointegral eLeH ) by the property:

N
7
(resp.
N . I
PR AN N
Eo I H=KIGI wih G a finte group, we can Toke

Er=@L = SSGG 8
| 8:]

LY

—>Mm ‘_f_b%

ML= MR = {

Rmk: The oef of a right cointegral Says that ker Spans a 1-diml
right Submodulle H. Furthermore, any non-zero element in ker
s dlso a right cointegrol. Later we will see that the space of
right Cointegrals in H is I-dim'l. Similar comments opply to left

cointegrals , left integrals , left right integrals.

Def. (Generdlized integrols) A (genedlized right cointegral is o



tensor g € HE'® (1*)®S Saﬁgﬁjmg

N
\V 7N
/T\ \ $

Prop. 4. Define a tensor Pr € H® H* by

N /]A\

Pr = é/ \\S

A -
A

Then P is both a right integral and @ right cointegral and it
nos tmce |
Pf. That it has troce | follows as

O-G) - -1+

To show that it's a nght integral, we use that H i finite dim!
to bend the dgfnmg plcture
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Apply o laoder To both Sides , we obfan

Lhs. = \/T = \/

) X) \ X
/\ / . m/ ) //
{0 Q@ &
[\ | T v

s 7L
T N
whie the T T
/\ S S
hs. = s\/x]‘ =) o | Ziﬂ
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Thus both Sides are equal , and that Pe is a right integral
Jollows from lemma 1. The progf that Pr is a nght cointegral s

similor ond left as exercise. 0

Lemma 5. Given @ right integnal bie and @ rght cointegral ex,
we houe

<

R

D—>3—>

€r

O—>

R

Qf: Indleed, applying a ladder to the [.h.s. gves us
NI
1< " l . = S\ >

T ea/ \ R €r $

The lemma follows by inverting the adder clemma 1. o
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Cor 6. (Unigueness @P integrals ) . Given a right integral b= ond a

right cornfegm( €r, we houe
A Ha

€Rr

AN

N,
>

In porticular, since the [.hs. is o non-zero tensor in He H*,

UR(ER) O .

Qf: Undo the Crossing on the L.h.s. Qf the lemma, we haue

<

D—>3—>

>

D
|

€Er

\'4

Adding on inuerse ladder to the equality, we obtain:

me— 4 he—

l s = 1 s =
A\i E

L | N

whie the rh.s. becomes

Mr
he—"

t
3
N
¢
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Mr Mr
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Rotate the pictures 180° gues US the desired result. o

Cor £ Ur d@‘?nes Q. non- degenerare Troce J%rm on H, So that
is Frobenius.

Pf. The relation
Mr
. F
gues rise 1o -
N
AU
so that . A
SRR Y N

€r

—
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showing that e is non-degenerate form on H.
([De summorize our discussions o the J%(looomg.-

Thm. 8. n. For any finite dimensional Hopf dlgebra H, there
exist left ond right infegrdls (i, pr (08 well as cointegrals
e, er), which are unique up to réscaling, UL, Ur are non-
degenerate bilineor forms on H, so that H is Frobenius.
2. ey #o iff H is semisimple 03 on algebra.
». If His not finte dimensional , then e exists (ff
Projective H- comodules are exactly  injective H - comodules .

Rmk: The thm. allows us to consider the stobe category Qf
H: H-mod (or H-Comad ), which are monoigal m‘angulmf@d,
S0 that Ko(H-mod) is a n‘ng. This will be discussed more
Cargful[g in what jb[louos.

Sketeh of progf” of thm. 8

Part 0 of the thm. is proven in previous lemmos. For 3),
see S. Dasalescu, C. Nostasescu and S Rainu, Hopf A(g@bm&
An Introduction .

We now show that part 22 of the thm. is true.

If &en+ o for H, then the leff H-module map:

H -5 k —o0

admits o Splitting as H-modules via:



Hence He kekere as H-modules and k is projective as an
H - mogule. It follows from cor. 3. that any H-module Ve k @V
'S projective, so that H is Semisimple.

On the other hand, if' &en=o, we hove éf = gevel =o.
If H were semisimple, H= @i Marcni, Dy as an algebra, where D
s a diision ring/ k. Consider the submodue H-€. =keL S H,
which 18 simple, ond thus must be of the form TP J%r some
i Bg counting dimensions - we have Di =k and Ni=1. Then we
would hove €. is a multile of the idempotent of projection onto
k., so that el +o. Contradiction. O

Kuperberg's  inuariant @f 3- mang%(ds

In this Subsection, we mostly follow Kuperbergs paper £13. The
non-inuolutory case is sfl‘ghﬂg more inuolued. We will moke the
asumption that S°=Id, é.=Cr=€, Uo=Ue=p, med=1. ThiS

holds. for instance, when H=KkIG1 for a finite group G, or H
= kCx1/(%P), where chark=p.

Lemma. Under this asSsumption, we haue

N\ L
1 NN



The lemma 18 a cordllary Qf lemma 3.9 Qf [21, we omit it
here

Recoll that to a 3-monifold M we can toke a Heegeard splitiing
gf M ond associate with it & Heegoord dicgam D which is a
Riemann surface S together with Some o and @ cycles on it such
thot they span Hi(8) and the intersection matrix of o and B
curves on S has maximal rank :

Two aifferent Heegoard diagrams give nise to diffeomorphic M fF
they are related by the following moues:

§ — ) ( (the two point mouve)
@ T D - (the slide move o

any some color )

O — [05) (remouing or creating
o triviol circle)

ond fc‘nallg stoblization | i.e. adding of remouing a handle a3 fol[ows;



GEr® -

ol X3 o

X3

Ly

Now we associate with @ Heegaard diagram an inuariant as follows:
0 an o-curve with blue morkings of  the intersection points, we
assign the tensor:

@ -

Wwhile to a B-curve with red markings, we assign the tensor

Q -

Then we connect the armows correspongding to the same morking
in the following way: First we orent the . g curves arbitrarly,
(we need to show then that the inuanont is independent of the
oriertationsy. Then f ot a gien intersection poirtt, the orentation
(x, 8> agrees with the underying orientation of S, we merge

the amrows :
(") : Orientation of § +——> 7§
M— u
A
e/ ]

R0



and 90 the orfentation <o, 8> = - orfentation c\)f S, we insert an anti-
pode befieen the arrows and then join them:

() : Orientation of § +——> A/ \m—_>

e

u

This process associates with any Heegoard diagram a closed
web of arrows and S, A m, and thus & number in the
base  field k. Bf_ﬁ)r‘e Checbn‘ng that thiS number (8 inuariant

under the moues, we need to See that This assignment i
indlependent Qf the orientation we Chose for the curues.

Indeed, reversing the orierttation of any circle: corresponds 1o

oading an extm. S to each arrow coming: out of / pointing into
the circle (8= 1d) -

SR — 5 1

where we used the lemma ot the begfnnin@ @0 this  subsection.



Now we check that this number 18 inuvariont under the moues
oboue .
0. Stablization. This corresponds o adding or rernouing:

e — M

which we assumed to be I.
. The two point move. When oriented , the two intersection points
ore g‘" opposite onentations, to which we associate

\A/S\m/
@} — //‘\/ \H

= 7 \_\M
e

_ \A me

= // \H

which is the diogrom associated witn

i

(3). Adoh'ng or removing Q triviol circle. The inuariance J%([ouos

from :

[—e€ =) = u—¢

. Finally, the slide moue inuariance ﬁ(lm fmm tne compotability



c a b
1 l
M\m /'M P‘*‘\m‘_‘/\A/M H\m‘_/\.
WS- \I - \':
I 2 l C/l\e C/l\e

This ﬁnishes the proof’

Rmk: In the semisimple case, we con identify W with the trace
on H as ollows. Recal that:

T N /i \
© 2 Pr = S S
: o
! 1

Thus when €ey+o0 (assume it's | then), we have
< E

A /]\ ? O
U A
EERIO DA
1




R Kuperberg's inuaniont also extends to o super version. In ﬁc’r,
the Jocts we obtained So for exterds with no ffort to Super Hopf
algebras, and thus the same procedure produces for any 3-
manifold an inuariont in the ground field.

For instance, the exterior algebra A on | generator becomes
a super Hopf* dlgebra if we assgn to % an ood degree. S0 that

(1®X) (X®]) = -X®X

in the product Qf two copes A®A . The corresponding Kuperberg
nuoriont IS just detcv for any 3- manifdld M.

In this senge. the oniginal def of Heegoard - Floer homology of
Ozsuath - Szabo for 3-men l’folds con be viewed as a. Qateqorification
of Kuperberg's inuariont for the Super Hopf dlgebma A, Sirce the
latter i3 the Euler chanactenstic of the Heegaard - Floer homology
groups.

Problems -

). What's the topological meaning Qf Kuperberg's inuariont ﬁr the

Hopf algebra. H=kox1/(xP) , where k18 a field of charp?

2). How do we aategorify this inuaniant 7

3). Maybe a good Starting point 1S ﬁrst to extend the gnid diogram
description @(9 Rnot Floer homadogy to be a homology theory of

D-complexes over k (chark =p) ¢ p-complexes means that dP=o
insteod ¢of d*=0).

Categorification of Fp



?pom Tacbtfng the problems cboue, we will need a Cafegorg%aﬁon
of the ground jeld k where our 3- mangfold inuariants lie inside.
Since ony field of finite chamactenistic contans Fp = Z/pZ , we
will categorifly IFo as a first step.

Recall that if chark=p, H=kx1/&P is a finite dimensional
Hopf algebra , and thus its module cotegory is Frobenius by

our eorlier results , i.e. the projective modules are the some
oS injective modules. For such Frobenius module categories, we
con define its associated Stoble category H- mod as' follows

The objects of H- mod are the same os that of H-mod, and
Jor any two obects M, NeH- mod , we d@cr‘ne

HoM - maa (M N 2 HOM -mog (M, N/ ( Morphisms that foctors
through an injective meduie)

where we soy that an H-module mop f* M — N foctors through an
injective (= projective) f 3 1 an injective H-module st. the
diogram  below commuites :

M—E N

\1/

On H-mod |, we deﬁne the Shg”r ﬁ,mcror* [11 Q8 ﬁ{fows. For any
H-mod M, choose an injection M —— 1 where 1 is on injective
H-module rsay I=H®M by Prop. 2, and Mo3d is defined to



be 1/M. It's ensily checked thar différent choices of I result in
isomorphic quotient modules in H-mod , 8o that L1 is well-
defined.

Furthermore, given ony morphism f: M —N in H-mod, we
con define the cone of f fo be the push-out H-module Gy so
that we have the commutative diagram -

The sextuple M SENJER Cr—0 Mon viewed in H-mod s
Colled o stondorol dlistinguished triangle , ond any sextuple which
i 18omorphic to 4 Standard  dlistinguished triangle in H-mod
is called o distinguished triangle.

Equipped with these Structures, we have the jbl lowing -
Thm. ». H-mod is a triangulated category.

2). The tensor product on H-mod descends to H-mod cgee
Cor. 3y, so that H-mod is trianquiated monoidal .



For the proof, see D.Happel, Trianguiated Categonies in the Repre-
sentation Theory of Finite Dimensional Algebras. A working def:
of triongulated monoidal categones is given by V. Voeuodsky in
his PhD thesis: Homology of Schemes and Couariant Motiues.

E.g (Consider the graded super Hopf" algebra. H=krd1/cd?) where
degd =1. The graded verson H-grmod is no other thon the
homotopy Category (= derived category) of complexes of k-
vector Spaces.

Cor. Go(H-mod) is a ring, with unit guen by the class of the
trivial H-module : [kI1 =

Now, let's (ook at the cose H=lkoxa/xPy where k is a_ﬁe(ol Qf‘
char p. By Jordan's thm, it's eosy to see that ony inolecomposable
module over H is of the Jorm kex1/(x®'y£ Ve, 12k<p, with
Vo being the trivial module k = The cotegory H-mod s Krull -Schmit
8o that any H-module V is isomorphic to:

Ve @V

Since there is only I simple H-module Vo and only | indecom-
posable projective mooule, we have :

(Go(H-modY= 2
Furthermore, in Go(H-mad)y from the ses.

0 —\o — \Vn—\h1—0,



we deduce that [\Vnl=mn+yLVel, S0 that
Go(H-mod) = Z-[\b]

Howeuer, it's more interesting when we pass to H-mod . Since
in H-mod , we have

V- 2H =0

the same argument as above Soys that inside Go(H-mod ),
[\Vp-1=D [Vol =0,

which implies that:
Cor. As a ring, Go(H-mod) = [Fp, 5
For more results along these lines, and progfs of some of these

results, See M. Khouanov, Hopfologioal Algebra” and (ategprification
at a Root of Unity: the First Steps.



