85. Extending Link Homology To Tangles

Previously in”§3 we defined the graded Frobenius algebra A=
ZoZx to lft the Jones poynomil to a graded chain complex
up to homotopy and we showed that it's a Unk inuanarnt.
In this section we shall extend this ~ lifting process”, or
categorification of the Jones polynomiol to™ the case of
tangles.

The ring H"
Recoll that we used the set of motchings when localizing

links into tangles. Now we use the same process for tangles
with boundary points fixed on a lne segment

(/} N
We introduce the set Bn of matchings of 2n points just
0S bejore (2n points on a circle) -

E.Q. The 5 maTd”\ings in Ba:
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Rmk: Our aim s to define a fanctorial tangle inuariant o fangles
0s oboue Should be regarded a8 a morphism (1-morphism) from
the object ¢ to 2n pants.

Certoin 2124™1- module

SO Ko(Ch)

]:
—
/ ey
J ' |
ZEQ,Q—IJ = Ko (Cqb)

Thus we need to spedify axtegories Cn for each 2n points. Tangles
wil be sent to functors between Cn ond Cm . while tangle
cobordisms will be sent to natural transformations  between
Junctors. To match with our previous ca’regor\g?caf ion @C the Jones
polynomial we will need to resolve tangles 0s before by matchings
in Bn (with possible O's insde), and apoly the same TAFT we
used in 8§3. First off. we need Kol(Ca) to be free 200.971-
modules porametrized by Bn. Then we will figure Cn cut by tking
into account Hom spaces of Cn's.

Similar to 83, we introduce the ﬁee Z204.9"1-module IN with
a bosis giuen by matchings of 2n points on a line segment (o
N=7w=m(0) s the n-th Cotalon numbersy .

Thus to ench mafchmg o€ Bn, we have osSociated with it a
free 29.9"3-module Qa



0= XOUS s Go=Zugid US>

Then what should we 0s3gn t© Hom (@, by ? We shall reflect b

obout the horizontal axis, glue it on top of a . and opply out
TQFT F:

w reflection m
b W §N O NCb)
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Def. (The ring H™) For each ne 220, we define a finitely genenated
graded abelian group H" to be

H" 2 Pabes. (WD ) In

We will explain the grading shift later. And first of all, we define @

multiplication on H", beam‘ng in mind the general pninciples qf
TQFT's from 82

Fiwahe) ® Fiba) —— Se.eF (W)

The mop will be o unless b=c. (Imogine the product gluen by
matrix multiplication with rows/ columns  numbered by matchings).
When b=c. the product is guen by evduating F on the
cononical  Cobordism of the saddle moues  that merge circles:



& &
T R = 6D
(2N )

SN SRS, SRS, Flwoho)

The associativity of this muttiplication follows immedliately : different
oraers gf multiplications  are given bg composition gf dgﬁferern“
orders of saddle mowes that are far away so that they are
isotopicC .

Next, observe that Wi1-a consists exactly of n circles for
QHH Q€ Bn:

S @ W0

so that 1®"e Flwray= A*". (e shall denote this element by I
Furthermore, multiplication bﬂ la is a projection

Fliwdic) @ Fiwa) — dcaF(Wha)
Yy 1a —> Sc.ag

This 18 becouse , in our 2d-TGFT F, merging a cirde into the
others is guen by mutilication of A's . and la consists of
units for this multiplication.



Similarly, one shaws that Za's are projections on the left as well
It follows that la's ore idempotents in H". From this we see
that the sum of fa's, when a ronges ouer Bn, giues the identity
eement of H":

I = > aeBn Ja

This discussion also shows the necessity of the grading shift in
the definition of H": 1#" now Sits in Q-degree O (recall that
n A, | sits in @-degree -1, o that fa=1%"€ A sits in 9-

degree -n).

The existence of these idempotents also lets us formally decompose
H" into o matnix ring
H" = Babern 1oH"1a

= Dabes Flbia)
which makes our eontier comparison of H" with @ matnix algebr
legitimate. .
|

Fluba) —

l'_\ n ~ Wb)

In summary. we have shown that

Thmi H" is a graded, associative, unital ring. 0



Eg. H Jor n=o. 12
(1h.n=0. We only have empty diegroms , 80 :
Ho = F(N)D) = &

2y. N=1 . There is only | ma’rching-.
N

so that
= [_—(OW = Afi} = 20X ()

With its usual m‘ng structure.,
3. n=2. Now trere are two matchings n B.:
w AR
Qa b
Thus H? written as a matnix olgebra, hos the J%mw:

Fwwaa) | Fwba)

IIe

FHwab) | FlWbb)

(O RQD)
FICA )| FIO O)
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The multiplication iS dgﬁned usmg multiplication anad comultiplication
o A J%r instonce,

ol | [
‘ F(@)‘ B

where the entry product

A efl ) —s F(O)

con be determined by first decomesing the map into

o\ 0@y o)

F ) — F( ) — F( )
&) ) &
1®| — l = 1®@X+ X®|
| ®X —> X — A® X
A®| — 7 —> R®X
K®@X —> 0 — 0

The other products in H* an be simiary computed



Rmks: 3. H" also admits o deseription as & path algebra. moolulo
relations. However. it's not dear this description is useful .

@. H"- f.9.mod s Morita equivdlent to @ certain porabolic Category
O o

@. H" is also Morita equiwdlent to Some KLG1 f;r Some finite
gouwp G where chortky | 1GI.

KO(HH) ond Go(Hn)
From now on we shall pass jrom 2 © a field k. (e wil
be working  (with H"®z k , which we Still denote by H".

The idempotents la . aeBn decompose H" into projectives:
H" = @aca, H" 1a £ Paea, Pa

and we cloim that

Prop2. {Pa=H"1al aeBnl is a compete list of indecomposable
groded  projective modules, which are pairwise  non-isomorphic.

To prove this, we reaall Some general facts about graded nings
and their GrothendiecR groups of  suitable ¢ fd./ fg. 1 f1. ete))
groded modlules.
If R is such a ring. we have on automorphism of its groded
module category {1}
i gr.R-mod — gr. R-mod
M — M1t



In this way the Grothendieck groups of Suitable groded modle
(otegories Q4  become o £0Q,971- module:

9*: Go() — Go(X)
[M]1 +— [M{zY

Proof of Prep. 2.

We reed to find out the Jaccbson redical of H". Nete that
with the gnading chosen. H" i Zzo - groded ano the muttipliation
8 grading presenuing.

All the ~ off- diagonal” terms are strictly positively groded . This
s becouse when a.be Bn ,a#b, Wb has strictly fewer than
n aircles:

Then the grading shift {n} in the definition of H" shiffs all the
elements in F(Wbra) into strictly positive Q- olegrees.

On the other hand. on the diagoral . the lowest degree term
S 1a=1®" eFlNaa) = A% (reall that X has degree | in A),
ond thus fnt - shift mokes it the only degree © tem in
Fina-a).

It follows that J(H" = (H">0 and

H/J(H" = Daean k- la
This in tumn implies that {4alaeBa} is a complete list of
indecomposable  idempoterts. The result follows.

O



Nototion: For ony graded modle M over @ graded ning and
f=aczmad®€%>,02.9"1, we shall wnte
M®F 2 P ez M{a1®™

Cor. 3. For groded projective H"- modules, we houe
Ko(H") = Paesn 209,73 [Pa] = IV

O

(or 4. The groded simple finite length modules are exactly the
La =k la

Jor ony a€ Bn. Thus Endwn(la) 2k
Go(HM = Paesn 209,91 [La] = IN

and the paining befween Ko and Go (see §4.)

Ko(H") ®zcgq1Go(H") — 200,971
(e . M) — dimk HOM(P, M)

2 dime(®rez Hom(P{RY, M))
8 a perfect pairing of  Zr2.9"1- modules. .

RmRk: Observe that simply by resticting to  graded modlules we
essentially truidlized the problem of  cdculating Ko and Go. On
the other hand, if we remoue the grading constraint . the
problem will be much harder!



Meta-Problem:  Think about using higher K- theory in - problems
arising  from - categorifications.

Inuariont of tangles: the usual approach
Now we briefly sketch how we an obtain orfertted €02 - tangle
inuariants of Chain complexes as we olid for onented links

L/} N
To 22@ such o tangle . we toke its complete resolution into

D HOOSSINg) _ marching Oh‘agmms (With embedded  aircles ), Togefher with
resolution cobordisms  between them

(/’3 ) . -2
Q. possibe To it we ® (9+9")
: O: resolution § j ; assign pwv

(ollopsing this mutticube cgf maps of projective modles and ool
appropriate - Signs , we get a chain complex of  projective H"
modules C(D). After some grading and homologial degree shifts
we obtoin ancther chain complex of projective H" module CD».
One procede as before to show the inuanance of CD) under
tangle moues .

A (o,6>-mngle



Inuariant of tangles : Flat tongles and HN- bimodules

In this subsection we shall construct tange invariants using H™

bimodules. We finst focus on flat «m.ny -tangles on the plane:
2m points

T 0O i sors

To such o tonge T we shal associate with it an (H™ H")  projective
bimodue  F(T). It's cefined by toking oll possible close-up's of T
using refl ected lmages of 2m-matchings on top ¢f T. and using
on-matchings of T on the bottom. Then we apply auwr TQFT
F to it and shift the grading by n -

F(T) 2 @aesn beBm F(WYTaA) {n}

Aclose ®4
Y gy

In this way . F(T) becomes graded left H™ . right H" bimodule
where the module structure is defined using saddle cobordlisms
and applying our TQFT -

left H™-action - - » F(@) £cevey
sodole @,
T - F( W.’ Wrnd F V.O
95 F(S)

nght H™-action --»  F( €23 ) N



l.e. the module map
(H™ FT), H") —— F(T)

IS determined b\g the cobordism's S|

=g Some easy FIT)'s
. In the Special cose where T= T ke get

F(T) = Han

0s an (H" H™ -bimodule.
(2) Inse T=0eBnor Wae WEB:
TV
() m -\
we get F(T =l H" =aP,  and FHTIEH" Lo =Rain)

In general. 0s @ bimodule w" F(T)w is both projective s a
left H™-module and as a right H" - module.



There are two man points of this bimodule assgnment being
6. functorial flat tongle  inuariarnt -

. Compositon of flat tangles.
Now guen two flat tangles T . T

2R points v 2m points
o ' -
T 2m points T 2n points

we con compose them whenever it mpkes sense:

We have defined for T.T'. ToT' bimocules HeF(T)em, wmF(T )
HeF (T Thwn, respectively. Consider the map
FHEF(T)am @ g (T)rn = wrF(TeT)wn
IS 1S

@desn, 0eBn F(N(G)TC) &k F(l/\)(b)TIOJ — @deBn. 0€Bn F(U\)(d)T°TIO-)

b.ceBm,



It descends to a map of projective (H* H" - bimaclules
HEE(T)am @ - (T)hn — meF(TeT)un
ond (t's not hard to show that

Thm 5. M @un(T) = F(T-T

(HR, H") - bimodules.

This essentiall % (lows rom the ﬁmcz‘oma ity gf F as a TOFT
ee

Proof omitted . M. Khouanou. A Functor \blued - Inuariant of
langles .

(2). Func‘rona(ztg of tangle cobordlisms.

A flat tangle cobordism between T. T' of the Some boundary
points iS an embeded surface S

2m 2m @
E S
2n T > oo —— T

with the boundarg condition that
aS= TTUT U (8Tn<I)

To such o cobordism S we shall associate 6 map of  bimodlules
FIS): F(TY — F(Ta).



We “cup” and “cop” off S using all possible matchings  time
I, which gves nise to Surfaces Idwdy-S:Ida 08 Cobordisms

between WHY T & and WD T=0. -
Wb Ta TdwdyS Ida ;

S 6 Wb T2

To such a copbordism, we cn apply our TQFT F . o get a map
F( Idwdy S Ida): F(WDY T QY — F(WD )

Summing ouer all possible a.b's. we get an (H™, H") bimodule mop
which we denote by F(S):

F(S) = BaernbeamHIdwt S Ida): F(T) — F(Ta)

It's readily Seen that F(S) is a homogeneous mop whose degree

1S
degF(S) =-XS)+Nn+m

We summarize what we hove “lifted” so far We define a 2-
category  Flat 2-Tangle as-
Objects: Z=0. To each ne€ Zzo. we Assign 2n points on a line




I-morphisms : I-Morn.m) 2 { flat tongles S IRxT, of 2n bottom
boundary points, and 2m top boundary points.

2-morphisms: For any T.T'€ I-Morcnomy, 2 -Mon(T. T £{ surfoce
coboraisms S betieen T, T in IRxIx . fixing boundory conditions
of Taa T

om zm@
g S
an T o ——T

Qur construction obove is then a 2-functor
F: Flot 2- Tangles —  Bimodules

N —> H"
T —> FCTy = (H™ H™) - bimodule
S —  FS): bimodule mops

This is in Some sense a TAFT with comers, and with restriction
to 3-d ambent spaces.

Notice that al the Constructions aboue only depended on
teing @ 2d-TQFT but not the rng A= ZIX1/0%), SO that we
con replace A by any commutative Frobenus algeba A over a



gound ning k. Loter we will see that it s the requrement that
F be a link nvariant that restricts Allk to be nelaﬂuelg small.
And we will See Some uanations using other Allk.

Problem . Can one extend the above Sty to all oriented) matchings
of 2n ponts (N many of them):

(\Y/BENGY

One would then get @ 2-functor restricted to 4d (note that the
Tangtes Sit in IR*I 8o obordisms S between fang(es Ue in
RxIxI S IR%).

Inuariont of tangles « all tangles
Once we have constructed flat tangle inuariants as in the
previous  Subsection, we can éxtend it to all tangles using the
some procedure s for the Jones  polyromids.

First, for the unoriented tangle of a crossing . we take ifs

BENTNEIE
PN




ond then assign to it the cone of the bimadue map:
F8): F(To) — FT)
namely, we define F(T) to be the chain complex of (HHM -

bimodules :
FT): - — 0 — F(To) 25 F(T{-t — o0

where F(To) Sits in homological degree 0, and we shift the 2-
degree of F(T) down by 1. as for the Jones polynomial.

For composition of  unonertted  tangles:

¢

W,

e decompose it into composition of flat tangles and crossings,
and assign to it the tensor product of chain complexes:

</\l\\ % .
.
( AT ——  F(T) @ F(R)®@m FIT) @n F(T))
/ } T
A

Finally. Jor a tangle dingram that is oriented , we count the
number of cuer and under crossings. and shift the 2-deg. and

homological deg. as in the Jones polynomiol cose -



FTY& FOT) DxM1 2% -ynl

We denote the chain complex Qf (H".H™ - bimodules So obtained
by T as well.

We hove the J%l(owt‘n3=

Thm 6. 0. F(T) is an invariant of tangles in the homotopy
category of chain complexes of  (H™, H™ - bimodules.

2, F(T) extends to a 2-functor from the 2- Category 9”
tangle cobordisms 0 the 2-ategory of chain complexes of
bimodules , up to a sign (see the remark at the end).

Sketch of proof of thm. 6.

Part 1 of the thm follows by identical arguments as in the
Jones polynomial  Case, except that we need to check 1 more
inuarionce  under the Tang(e move :

RIS

This fo{(ouos easily Since after resolution, both sides give isotopic
dl‘agram&

N\

N -
7N 7N



and the inuariance fol{ows ﬁbm ﬁnctom‘alig czf the 2d TQFT we
Storted with.

The remaing Redemeister mouves 1.1.1 follouo Just os jér the
Jones polynomial . e show RI below, which also fores our 2d
TQFT to be ~ r‘e(aﬁuelg” small.

I

Resoluing T  we obtan:

-3
/ \

S
2 ==l

Thus,ifwe dercte | | —~ || bg Ti, then
Ellelh=FO)e T .

A

-‘— 1

The cobordism map F(S) is just the multiplication map. Note thot
the complex

0 — F(O) @« F(T) = F(T) — o0
containg the subcomplex

0—> k1 @ F(T) = F(T) —0
which is contractible in the homotopy categery. I we allow any
20 TQFT to Start with, then, to obtain inuarionce of RI, we



must require dimkF(O)=2, so that we have the decomposition:

0 — F(O) & F(T)) = F(T) — 0
IS
0— KTy — FM)—0

e

00— FT)—0

ond in the homotopy cafegory, we get the complex F(TN=F(T)
This indeed is the mse since we chose our 2d TQFT 1o

satisfy

FIO)Y=A = lkoxa/ ox?

Rmk: In the next section we will see Some variations of Khouanou
homology by choosing différent bose rings k.

For part 2 of the thm., we first exhibit how to extend F o
tangle cobordisms.

< T

To S

(Fiven @ tangle cobordism S between To and T, we can chop
S up by intersecting it with planes RxIx{t} € IR*IxI



A section 08 this i8 called a frome. By chopping up fine enou?h, we
con represent any Cobordism by . sequence of frames (called a
movie, not Surprisingly ), such that the tangles in neighboring frames

differ not too much. There ore 3-types of flme changes (Roseman,
Corter - Soito) :

0. Isotopy moues T, H.N  cthere is nothing to check for them).
b. Reidemeister moves I I I

RN Q] KX

These moves do not inuole the change of the topology of the
tongles in the frames .

c. These are the moues that inuolve loaal changes ¢of the topolagy
of targles in the frames:

¢ | O O ¢
Birth move Death move
=P DX

Saddle moues



For moves of type . b, we assgn to the comesponoling cobordism the
isomorphism - fnctor of complexes as in part 1.
For the birth move, we assign the inclusion:

Lly1 @ Ll1d1

T — | T O

(T — FT®kA

X L— X ® |

For the death moue, we use the tmee of A

|||T|||O O> |||T|||

T T P

FT @A — F(D
X® QO — Q) X

To soddle moves, we assign the map of bimodules we constructed
earlier by closing up the surface with a saddle using all possible
matchings and then applying our 2d TQFT.

Now part 2 of thm.6 can be rephmsed into:

‘ Thmé. 2). Under this assgnment, isotopic Surface cobordisms
Que the same mop of chain complexes up to @ sign.



To prove it, we need to check the inuoriance of this assigment

Jor isotopic cobordism surfaces when they have different movie
presentations .

Its a thm. of Roseman, Corter- Soito that , different mouie
presentotions Qf coboralism surfaces give nse 10 [sotopic ones
iff they con be related by a finite number of movie moues,
which are clossifled into 31 types. Here are 2 examples:

g[aq] ~ [EIs
==X ~ [REX

For the complete list, See their original papers.

As an example, we shall show the Inuorionce under one of the
most complicated  mouie moues

NSNS
KIKXIXIX
T TR TS Y
\\ /\:\ /\//> Xg S




To do this. we note that

7 S
To /\\ T //;

To, T, Qre invertible

Hence F(To)oF(To')=F(III1)=H*. This in turn implies that
At(F(To) = Aut (H)

Indeed. given any outomorphism o of F(To) - &: F(To) —F(Te)
by composing with id: F(Te) — F(T") , we get an automorphism,
of H (onversely, any automorphism of H*. after composing with
dFT. gues rise to an Qutomorphism gf F(To) . Ore checks ensily
these are inverse of exch other.

Lemma..  Auterim(HM=Z(HM)e = {21},
Pr: In generdl. giuen any ning B, then endomorphism ning of B as
o (B.B)-bimodule is just the center ZB) of B. Intase B
s graded and we nrequire endomorphisms preserve grading, we
would get Endie.er (8Be) = (Z(B))o, the agg. 0 part.

In our cose of H". we coim that (Z(HWo=21. Thus it
Jollows that the inuertible endomorphisms @n only be 1.



To prove the chim, we recal first that, deg O elements in H"
ore of the form X=Xaegn Kala, Xa€Z Now VabeBn two
matchings  Fiuba) = AR J%r some Rz1. Choose any  non-zero
gement ye Fibioy, If % is a central degree o element of H"
then XYy=yx, and

’xg—': 2 ceBn Xe 1CH = 2 ceBnXe Scb\ﬁj = ’ng
Yx= 2ceBn Y Xele= 2ceBnXeSacy = Xay
= Xa="b.
This holds for all a.be B". The claim follows o

Naw i we dencte the mouies in the movie move above by
S ond S’ respectively, we get:

&) : F(T) — F(T)
F(S): F(To) — F(T)
Then
F(SYeF(8): F(T) — F(Ts)
F(SYs FS): F(T) — F(T)
are outomorphism of F(Te), F(T) respectively. Hence by ocur lemma

above . we obtain:
F(S) =1F(S).

Rmk: It con be checked that in this cse one actually has +1.
But other movie moves give rise to a genuine -1. Works of
Morrison, Clark . (Walker ond Coprou Show that one aan get nd



of the sign issue ar the cast of adding extre decorations
to tonges and cobordiism  surfaces.

Rmk: Although the deg 0 part of Z(H") is just Z, the whole
ZH" 18 more complicoted. It's actual{ isomorphic to the

cohomology ring of a certain type of Spriger uaniety. See M.
l(houanou Crossmgless Motchings ond - the Cohomology cf (. n)

Springer Varieties



