8 11. Hochschila Homology ond Applications to Link Homology I

A toy model

Let Kk be a fleld of chork+#2. Let A=kexa be the polynomial ring
in %, ond Ao=kx1< A. We will assume degx=2. Then

A%AO'I@AO'X .

Defne B2 A®aA. Then B is a fee rank 2 left A mode, with
o bosis {11, 1@x}. The multiplication mop:

B DA

0.®b — b

S surjective and hos @ Remel Rerm=<xe1-18x> S B. kem is
0. copy of A where the right action of % on it is the Same as
the leﬁ action @C -x on it. (e wil denote it bﬁ A" In genenl
T ¢:A—A is an endomorphism, we will derote by A? the A-
bimodule where the right oction is twisted bg Q: QeX =00,
a(A")a 2 aAa in gereral , and zf ®. Y are two Such endomorphisms,
A*@a A= A™ . In porticular A @A = A

Thus we have a ses. of A-bimodules :

0o — A > B > A — 0

Similorly, we also hove the s.e.8. the other way around:

0o —>A —>B—A—0
F — fixer+i@x

Now, consider the mangu(ated categonies



{I. Com(A-mod)
I. D(A-mod),
ond let R be the complex of  bimodules:

0 > R > A — 0

where B §its in homologlmi degree 0. Tensom’ng with R over A
s an endo-functor (n both categories I and I But in I it's
Q. bom‘ng OCtion Since,

0o — A —0

lv
0O—R —A —0

s a gs, So that R®M is gis to A@M, and
V: A®y— = R®s-

s a cononical isomorphism of functors.
Likewise , we introduce the mmplex R’
0o —A —B—o0

where B also sits in homological degree 0. It's also true that in
wse I, R'®-= A @-.

However, the functors are more interesting in 1. For instonce, if
we toRe M= koxa/oy =k, we get

A®k : 0 —k —0
Yy

Reak: 0 —k —k —0



W0 non-homotopiC complexes.

Lemma 1. R and R" are mutually inuerse functor‘s on Com(A-mod).
QJC:

We wil show that, os complexes of bimodules, R ®aR'= aAa

= R®@sR. In fac“r . both R®aR' and R'®R are isomorphic to
the total complex of the cube:

B®AB — B&®A

I

ACR—— ARA ,
and notice that

BoaB = A®LA®sA

= A@Ao, ®AOA @ A®Ao’x ®ADA
= Bo B

One checks reodily that the total complex decomposes into:

0— R—™B —0
D
0o— R—B —0
S
0— A — 0

~——

hom.d% fo}

with the first 2 summands contratible complexes of free right A-
modules . The lemma. followss.

O



Qouqu(er complexes

Now let A = kex,x21. The transposition ¢ interchanging % % octs
on A as on endomorphism. We define A" to be the @-fixed Sub-
nng Qf A ie. A= Kixtxa, %3, Similorly, we dgﬁne A 2 aAoa
(= A% in the previous notation). Since we assumed that Charlk +2,
A= kDX, %i-%21 and A = kixexa @ kox-x1" . We set

R=A®4A,

ond Similor as in our toy model , we have:
o —m A —R LN A —0

0 — A b B— A —0O0
where J‘cl)é (% -%)®1 + 1® (K-%). (One can think g” Xi-%2 0OS
the X in the Toy example. and tensor euergminﬁ with  Kx+%21).

More generally, we let A=lkix,~. %1 and let the SymmetnC group
Sn act on A by permuting %i'S. We will make A graded by
QSSIQan degx;=2._ Dgﬁne J%P eoch Si=((. i+,
A2 Si-invaronts in A
= KCX1, ==, Ko=) Dt Ko, XiXiw, X2, -, Xn
ona
Bi = A®4A{-1}
so that deglei=-1. e have Ses.
0 — Ai— Bl A—o0

0 — A L Riil— AT— 0



Lemma 2. (Soergel) -
m. Bi®Bi = Bi{t® Bi{-1}
2). Bi®a BJ ’EBJ@AB{ f u‘—j\>|
3). Bi® Bitt ® Bi = Bi.in © Bi
Bin®a Bi ®Bin = Riin ® B,
where Biin = A®awA -3} , ond A™ i the g gf inuarionts in A
under permutations  Si. Sis.

Proof omitted. But note that 3y implies that:
B ®aRi+®aRI @ Biv) = B ®Bi ®aBix © B

Similor 0s in the Tog model @se, we introduce complexs ﬁr each
I<l<n-1:

Ri: o— Bt —A—o0
R't 0 — A — Rif

Prop. (e have:
(n, Qf®A Rll =~ A
Q1®AQJ Q ® R UC li-j1 >
3). R ®p Risi @4 Qu = Qm ®p R: ® Rini

The pmgf is oue © Rouquier but an eementary argument can be
found in" B.Els and D. Krosrer, Rouguier Complexes Are Functoricl
over Broigl Cobordisms.  Port v and @ follows readily from the



lemma. For 3, one Shows that both Sides gf the identity
are homotopic to the total complex of

i in 2} — Bill
/’ Ri®:B {2} } \

0 — RBiini3} A — 0

\ Bt ®a Bi 2t — RBin{i} /

Soerge( 'S theorem
Consider the following monoidal category (8ot - Samuelson  category
BSCn (nz1y, whose :
0. Object: Tensor products Qf Bi'S with grading Shifts, and
direct Sums of these.
@). Morphisms: Oegree O bimodule mops.

For instance, if n=1, BSC is generated by
A, B, BeB
with groding shiffs . dlirect sums .

BSCn is an oaditive cotegory, whose Karoubi enudope is  what
we need.

Rewll that, Jor any additive aategory G, its Karoubi envelope
Kar(G) s the category which has as:
(. Objects: pairS (M.ey where Me Ob(G) and €€ Mora(M,M)



st. @*=¢ (idempotent)
@. morphisms : Detween any two objects (M.ey, (Mie), a

morphiSm IS & diagram::
M- M

N

el

M= M

(e, f=efeeMorgMM).

Kor( G is also known as the idempotent completion of G For
obelion cotegories A, Kar(A) =4, If G s odditive , monoidal,
then 8o iSs Kor(G).

Def - The Soergel category SCn tn2iy is defined to be KartBSO,
the Karoubi envelope of  BSCn.

Thm. (Soergely The  split Grothendlieck group KotSCn) is @ unital .
associative ning over 204.971, with unit [AI, and if's generated
by bi=[Bil 1=izn-, subject fo relations:

bi= (@+a" b
bibj = bjbi 1i-jI>
Di D Di +bis = bl‘ﬂ bibir + bi. O

Def. The Z1.9'1 cgebra Hn@ is the algebra genemated by bi's
1<i<n-1, Subect to the above relations.



Thus Scerget's thm. says that there is an isomorphism of rings
Hn@ — Ko(SCh)

bl' — [8[]
For the Herke algebra Hn@. one usually picks another set of
generators i = abi-1, 1<i<n-, which samgﬁes the relations :
T = (- T +¢°
Ti-U =TJ'Tf UC li=j1>1
TiTin T = Tin Ti Titl

The f;‘rsf relation, rewritten in another Wy, S0ys that
(Ti-@*Y(T+) =0,

This saus that Hn@ is & Oeformation of the group algebra
ZLSn1 (Q=1).

\Via Soerget 'S thm, we have a drcﬂonarg:

SCH s > Hn@)

Category Qf ﬁ”"fe alimil —— The ground ring 209.91
groded vector Spaces

A — |
Bi — bi
Ri®a - — Ti=0abi-|
Ri®a - — T '=a"bi-|



Remark : DA-mod) U.S. Com(A-mod)
Com(SC) acts on both D(A-mody and ComtA-mod) . But recall
that on D(A-mod). Ri= Al wp to a grading shift . so that

Ri=A
mooulo graaing shift. Wnat a(Aila does is that, when Xi/Xe
posses through (t, they get Switched , whie %j (j#t.i+n are

unaltered. Thus graphically, we can depict the action of A ®a -
0S :

which means when i Pposses through the crossing . it becomes

Then Ri=A just soys that, locally, we have:

2

which Says that this IS almost the same as the Symmetnic group
action.
On the other hond, the ses

0 — AT — BRSNS A—o0

o — A 3, Rii}— Ai— 0



leods to d.t.’s in Com(SCn):
A — Bl - A— A

or equivalently
Al — Al —Bifil — A
so that
Bi{i} = Cone( Ar-1— Al
Since A®- is the identity functor, which can be depicted by
the local picture:

this says that Bifit is the Cone:

Bift=Cone (| || [+ | — 1= X~
Thus Ri is the cone of the natual quotient mop of complexes :
CLo—l [+ — [l X~|[—0l"
Ri = l
L Lo—| [+ [+ | — 0]

The two copies of identity functors get conceled out in the Oenived
ategory but not S0 in the homotopg category. In this Sense, we

The oction of R on Com(A-mod) is a °homo£og:bal
qQuontization ” 9“ the Symmetric group action on DIA-mod).




Thus the Ri/ R/ action on ComiA-moo represents o genuine
bral‘dlhg:

‘ ‘\Q/\; 4 ‘ {/p\/' ‘

This phenomenon of “homalogical quantization” clso ocours in
matrix factorzations

Problems :

o. It's Rnown that the braid group action on (bm(A-modh, but the
progf uses very Sophisticated methods of  geometric representattion
theory. One an try o find o more elementary  topologial. proof:

(). The positive crossing S represented by positive complex

Ri: o— B{t — A —o0,

where Bifit sits in homological Oegree 0. It's an open question
how the homological positivity is relted to the positivity in
kot theory.

More on Hecke algebros
In the previous Subsection, we defined the Hecke algebro., and
now we recoll some bosic facts about them, with SC aiding
us explaining.

Recall that Hn@) is the Zr0.9"1- algebma generated by T,
i<isn-I, Subject to relations:



Ti=(Q-nTi +4°

Tl =TT f (=j1>]

TiTH T = T[ﬂTi Ti+)
As J%r ZLSn], the thind relation implies that Hn(@ hos a8 on
obuious boSIS:

{Tw&TiTa~Tir | weSn, w=Si~Sir is a reduced expression }

But it hos another more intringic. bosis. defined o8 follows. For
each we Sn, choose o reduced expression w=8i-Sie for it . Then
there is . unique indecomposable summand Bw inside Bi®a - ®a Bir
Such that it doesn't appear as o Summand in ony B ®a - @4 Bs
J‘br‘ S<r.

For instance, when n=3, all Bw j&r weSz are .

R B. B, BB R.®%R, B®a:R: .

:Def The Kozhdon - Lusz’ﬂ'g basis {CwlweSn} are the imeges
Co & [Buwl € KO(SCn) = Hn(Q) .

By our def, we have. v w.w'eSh

ol
Ruw ®4 Bu = Buyesy B ™"

where filw € 2:[0.971, o that on the Grothendieck group level,
we hove:

Cw-Cwr = waw% Cuo



Next we define two operotors on Hn@ -

Def, m. The inuolution w: It's the 4-ontilinear, antihomorphism

definedl by the properties:
{ wWebi) = bi
WXY) = WYX, VX Y€ Hn(@).

. The trace mop € : Hn(@) — 21491 - It's the 4-linear map
charocterized b\q, ¥ We Sn

E( Tw) = {I W=

0 w#l
USing these two mops, we con define a Semi-linear on Hn(Q) -

D@“. (Semi - lineor form): ¥ %,y e Hnc@)
(% Y 2 ENY) |

It's 9-anti-linear in X, and 9-linear in y. Ore easily uerg@es that
(=]
{(l, Dii -+ Dim) = @M f (1< < (m

Rmk - (A)hg do we want & Semi-linear J%rm?

When categorifying & ring R acting on a module V. It helps to have

a semilinear form on V- as above Aﬁer aategorification, the semi-
linear jbrm becomes



([X1, LYY = gr. rR (Bjez Hom(X. Y}
where X, Y are I1-morphisms in the Cafegorgﬁ’ed category U of V,
and odjoint maps with respect to this bilinear form are lifted to
Dicgjoint 2-morphisms in R which categorifies R
Another feature of the bilinear form is that . usually if" one
specialize "d=1, it becomes a boring bilinear form, but the graged
version :
Hom (X, Y = Hom(X, Y)Y i} = Hom(X{-1}, Y)
Says that the boning bilinear form, gffer o-deformation. becomes
a-semi-linear. A Q- anti-linear inuolution allows us to Switch ﬁom
9-gemi-linear to 4-bilinear bg setting
(X.y) £ (LX), Y.

Gmph icol presentation gf Soerge( Qtegory
In this subsection, we will use Sfring diagrams gf §7 1 gie a
grophical depiction of SCh. This is the joint work: 8.Elos, M.
Khouanou - Diagramatics for Scergel Categonies.

First off. Bi® - is a seff-adjont joint operator on A-mod, which
We depict by a cap:

The maps of A-bimodules, or rather, 2-morphisms of functors,
will be represented by:

Bi— A I
i e



A— B 1

The morphisms:

Bi@a Bi = ABARMA — B S (REEE
f@l@g = 0
.]C®'x®9 Hf@g __Bll__x_&___
__Bi____Bi_
Bi — AGWA®:iA= Bi®y R \/
feg— feoxeg ____J _____
Bi

ore depicted by trivalent uertices.
The foct that Bi is a Frobenius olgebra object cver A gives
us the graphical relations:



Since A is commutative, multiplication by any elements of A gues
endomorphisms  on - any functor* on A-mad. We will depict by
drawing @ box labeled by elements of A this induced endo-
morphism :

0 o€ A

In porticular, one checks readily from the def’ of B that the
closed pictures:
I = (] - L]

.
T

B

where we denote i by a box Just abeled (. One con check
that (exercisey:

—®)—
>
&



The lost two equations imply Bi®aBi = Bt ®Bil-} by settmg up

maps: -
VN

A\/A

The above relations and their wists bg adjunctions giue all relations
of one ‘cdor” i. For adjacent colors 1, i1, recall from lemma 2

that we have:
{'Bi ®a Bitl ®a Bi = Bi.in © B:

Bir® Bi ® Bin = Riin ® Bi+,
We will depict the composition of the projection Bi ®a Bir ®a Bi
ornto B and the inclusion of Biiel bock info Bin®a Bi ®aBix

Bi®aBir ®Bi — B —— Bin®Bi ® Bix

X

P S B

Then it Sa’us ies the relotion

LR

by a 6-ualent uertex



which implies the decomposition Bi®aBin ®aBi = Bi.i ® Bi as
fOY‘ Bi®Ri = Bt © Bif-1.

Bi ®a B+l ® B;

AN

Bl [+

NI\

Bl ®A BI'H ®A B\

Here we need to use that,

There are more relotions cbout 6 ualent vertices Such as:
_ l | l . %
7 )



See the aboue mentioned paper for all of  them,

Next, lines for for away i.] (li-ji>1) €N Cross each other at

will
X- A

N i

Then the most complicated relation among [+, (+2 I8 the ﬁl(owhg:

XK
PRSI

i+

If we denote the graphical monoidal aateqory  (3Sn whose objects
are Sequences Qf labels & =tiiia—imy, 1¢e<n . and whose morphisms
are k-lineor String dicgrams modulo the rélations above. then we

have:

Thm. (Elios - Khouanou). There is an equivdence of k-linear, graced
monoidal categories between (3Sn and - BSn.
Furthermore, on the Grothendieck growp level, ¥V B.Ce Morgs,,

([BJ.ICT) = G nanRa-mod Hom (B, GjezCijh

where () 8 the semi-linear J%rm on Hn@ defined above. o



For the proof, See the aboue mentioned poper. But what one
needs to Show that any closed String diagram , a8 endomorphisms
of the identity functor A — A, reduces to linear combinations
of pictures only consisting of boxes labeled by (€ {i.--n§, ie

polynomials in A

Extension to braid cobordisms

Recall that we have exhibted o braid group action on Com(A-mod)
by assigning to a crossing the complex of  bimodules:

Ri- 0o — Bi{t —A—o0
In the works :

(.M. Khouanou, R. Thomos - Broid (obordisms, Tn‘angu(amd Caregom‘es,
ond F (ag \/aneties |

@.B. Elos and D. Krasrer, Rouguier Complexes Are Functorial  ouer
Braid  Cobordlisms |

it's shown that this braid group action extends to braid cobordisms.
i.e. to ony broid cobordism S between two braids ¢ and 7

) o

T, S

we can associate with it & map of chain complexes of A- bimodtules
F(S) : QO] — Q(Tz



Then one needs to do a consistency check as we did J%r the 1l
cose in 85, i.e. we need to verify that the assignment is inuariant

under mouie moues.
Once again, we have that the ring A can be defined cver Z ano
the degree 0 port of its center 1S only Z:

ZIAY=A=Z.
The trick in 85 applies to reduce the consistency check to only a

8gn issue . For instance, the trick says that the two different
paths in the most complicated mouie moue

NI NN

Y]

define two maps ¢f chain complexes of A- bimodules up to .
Then the Sgn issue is ensily dealt with zf look at only the frst
Jew terms of the chain complexes inudved. Cf. §5.

Here we 0lso need to mention that in the works of Kamada,
Corter - Saito , the some 2D String aiagrams are used to represent
cobordism Qf braids in 4D. For instance, they depict bﬂ

Tin @ Tin

Ui CGin O



the cobordism Qf Reidemeister T moue , and theg denote the mouie

L)X

which indicates the topology change in the Ccobordism.

Hoschild  homology for Soergel categories
Now given a brod 7= 0iF where T, iS @ Simple Crossing, e
obtain & chain complex gf A - bimodules

& Er
Re = Rai®a - ®4 R

gieft1t, Rei= Ri if &=+ or Ri if &=-1. Then ore an ask
if’ the Hoschild homology HH(Re) is an inuariont of the broid
closure T

It turns out HH(Re) iS not that interesting, Since it factors
Through D(A-bimod) &0 that it'S not braided. However, if we

write out the chain complex
i ~itl

Re: -~ — Re LRE—-

Then each R is a graded A-bimodule and the differentidls di
are grading preserving A-bimodule maps. Hence we aan toke the
individual Hoschild homology of Re and for each je 2, define a
chain complex :

s HHRE) 5 HH (R —



Summing over all j. we get a triply-graded homology theory
(Hoschild grading. homological grading, and the  interal grading
of each Rs a8 a graded A-module), which we denote by
HHH@). We have the following:

Thm. HHH@) only depends on the braid closure T . The Euler
Charocteristic of HHH(g) is the HOMFLY-PT polynomial of
the braid closure. =

=g The unknot O can be regarded as the broid dlasure of

y

0 which we assgn the bimodule A =lkexa. Using the Koszul
resolution @C lexa:

0 — kox1® kox1 —kox1 ® kexa - lkexa— 0
| —> | ®X - X®]|
we con see that HHH(|) /s just

iy 00— kX1 = kixd —s 0 — -

SO that

/X(HHH(“) = Z(‘:O g.zi - 't Zf:o QZI = _%;57

Rimk: At the moment it's not quite clear how to extend HHH(@) 1o
o July functorial link homology theory. Reaall that as for H", to



have such an extension, we need H(O) to be ﬁnh“e dimensional
over H(®). Howeuver, this is clearly rot the ase as ﬁom the
obove example, H(O) is frzﬁniTe dim!l but Hep) = k.

Problems:

D. How con we modify the whole theory to make it functorial ?
2. Is there a non-braided description 7¢ See Ozsunth- Szabo - Gilmore
using Singuler broids to give @ non-braided description).

3. SeeR the connection with the topological vertex. (Talk to Melissa
Liu or Andrei Okounkou about thiS).

Koszul resolutions

Finally, we record the bimodule resolutions of A. Bi so that
in principle, this allows us to compute HHHw@) for any braid
T

For A=kLX,- %1, we have
A®A > A— 0

Whose Remmel s generated by <%~y =, Xa-Yn> S KDX1.Yy,~ Xn.Yn]
=~ A®A. Since A is regular, we con extend it to the Koszul
complex

ABA®NLY -~y —> A,
which resolues A by a complex of fee A®A - modules.

For Bi, let o= (X +%0)® 1 = 1® (Xi+%2), Oz = XX ®l- |® XXz .



Then the total complex cj the fol(owmg diogrom resolues B
ABA—"ARA

ARA—5ABA



