86. Milnors Conjecture
In this section, we gue some opplications of the machinery we
Ceveloped S0 for.

Voriotions of  Khouanou  Homology
Previcusly we have seen that 1o define o flat tangle inuariant
oll we needed was a 2d TQFT over a base nng Kk . Equivalently,
we needed a Ccommutative Frobenius Olgebra A/l It is only
when we warted RI - inuariance that we were forced to reguire
dimkA=2. In this Subsection, we gue a uanation of the fangle
inuariant by choosing @ differet 20 TQFT.  This construction is
due to Bar- Naton,

The idea is to replace the base ring k=2 by k=2Ct], and
set our 20-TQFT to toRe udue:

F(OY = A
IKCX1/(3-1)

= ZLt/Xx1/(X*-1)
~ ZLt1 | @ Zrt1x

Where degt = 2degX = 4. We shall refer to any construction using
this 2d TQFT as a t- theory”.
In t-theory, we have

F(D O) = A®|k“'®u<A

m m

which is a mnk 2™ free k= Zrt1 - modue.



Moreouer, in t-theory. we have

[ A= @ X+ X® |
AlX)= X®X + t(I®1)

[ E(X)=|

E(n=0

One con check clgebraically that A=2rx1 is Frobenius over |k=2rta,
A better woy to see this 1S to regrd A os the SU-equivariant
cohomology of  IP(C) -

H&ua (pt) = HY(BSU) = H*(HP™) = Zrt1 (degt =4)
Héue (IPIC) = Him(pt) = H¥(BUm)= ZLX] (Oeg =2)

where Héua (IP@) = Him(pt) Since SUy acts transitively on [P(C)
=§' and the sStoblizer of any point on 8 is isomarphic to L.

Now one con carmy out all the constructions we have done in
the previous Section for this particuar TAFT and obtan Bor-
Netan's — oriented  tangle inuariont, which is Sfunctorial up to a
sign.

RmR: The most gereral version ¢f this * relative oim 1" TQFT
con be reglized by Tabing

k=2ct.h1, degh=2, degt=4
A= kIxa/x>hx -1,

which can be regarded a8 using U~ equivariant cohomology.



The Rasmussen inuaniant
(We shall denote the t-theory chain complex @C an onented link
L bfj Ct(L) and itS cohomology by He(L) s@z,J- HY(Ly, so that
Gr(Ly, HelL) ore naturally  Zcta-modules.,

Ce(L) by its dg‘i’niﬁon IS o chain complex wp to homofopw
Qf ﬁnite(\oj Qgeneroted ﬁee Zrti-modules, and eoch term in the
complex 18 @ direct sum of the free module A = Zrx1 with
Some. grading shzﬁ e con further extend this Zrt1- module
Structure on Gi(L) o that of a  ZX1-modue by choosing a
bose point on a ﬁxed component of L :

Fixed bose point —
O<:> L

One con imogine that this point is placed at oo, and the Zexa
module structure comes  from meging L with circles near s, S0
that it doesn't interfere with any other ports of L.

[Q_,

Any cobordism S befween Li and L2 are then required to preserve
the base points of the links

C




N
</
L2

A%
C\Q S
Li

Such an S induces an A= Zrx1- modue mop between (x(Li) and
Gella) , and He(l) ond Hetla) ox=t). It s Qf bz‘degree (0,-X%3))
ie. it doesn't Shift homological dlegrees. by definition . and it maps

HU(L) —— HE9
Final(g. we have H(O)= Af-1t, Siﬁing inhomological deg. 0. e

shift the 9-deg as for the Jones polynomial cose to moke the
mutiplication map homogeneous:

Af-1}
® 3
Al Af-1}

In the following we shall pass from Z © @ o that for any
nk L, Ceby . He(l) are finitely generated, bigraded Qrta-
modules . Multiplication by t doesn't change homological degrees.
By the classification thm. of finitely generated Qrta-moclles,
Ht(L), as a @cta-module, must be of the form:

@Et:|£ @ PiQcta/ct\y

((tNy are the only homageneous  ideals in Qct1),



(Ve con compute the ualue of 4 for ony Unk L. To do this, we
fist want to eliminate the torsion part of the homology groups.
This can be dore by setling t=1, at the cost of collapsing
the Z-grding from X into a Z/4-guding (recdll that degt
=4,

Def (E.S.Lee's homology groups). The Lee homology group
Hiee (L) of an oriented Unk L is the homology of the complex
Cr(Ly /¢t -0 CelLy

Hiee(L) 2 @iez oezu H " C(L) (t-nCeL))

Tm. I. (Lee). For ony Unk L, not necessanily orented,
Heee(L) & (DD.-#{Componerrtsqu

as Q- vector 8paces.

(e will sketch a proof of this thm at the end of this section.

Cor. 2. The rank £ of Ht(L) equals 2-#{Components of L}
Pf: Indeed, (L) o8 complexes of Qrti-modules, is a direct Sum
of complexes -

(0 — @ETJ—>O)£€B@5(O—> ®ETJLN§®ETJ—>O) ,
since Qrt1 is ¢f homological dimension 1. Euauating t=1 Rills all

the latler complexes while the remaining (0 — @— o) ¢
Caleulotes  Lee's homology. o




The next observation about Ht over Qrta is that, with respect
to lnk cobordisms S . Ht(S) takes torsion Subgroups to torsion
Subgroups . since it commutes with the Qcta- action.

HeS) « He(L) ™ — He(L)™

This in tum induces @ mop of free modlules:

HT®S)  He(L)/ Het L) ™ — He(La)/He (L) ™
1N IS
H't‘([_l)fme Ht(l_n)free

which 1s  well-defined up to a sign.

From now on we focus on the case of Rnots. and we use the
bose pointed version So that Cr(Ly, HtLy are A= Qrx1-modules .
Then

Ht(L)= X-torsion part @ QLXI{-1+S0

where we hove ony | copy of QLX3 as the free part by the
cor. obove ( mMnRaeez Qrx1=2) .
For Rnots L., we have the jb(lown‘ng:

Thm. 3.0y, (Lee) Hiee(L) = Altt-nA{-1+ S} for Some SL€22Z,
. (Rosmussen). If S is a connected cobordism from two Rnots
Ly and L2, then Heee(S): Hiee(L) — Hiee(l2) iS Non-trjvial.
Sketch of proof

(). Hiee(l) 18 rank | over Alte-nA = Qrxa/ec-1y follows from
lee's thm 1 directly. That it's gf odd 9-aeg also follows from the



description of cycles classes in Hiee(L),

2 basically follows from the construction of Lee's homology
theory. See J. Rasmussen. Khouanou Homology and tne Slice
Gerus. O

Thm 3 implies that Stye 22 and the fee port of He(L) sits
N homological degree ©.

Def. ( Rasmussen invariant). The even number &Ly iS called the
Rasmussen inuariant of a knot L.

=.g. The unknot O hos
stOv=o

This follows since we set Gr(O) = Af-
Now i 8§ is a Connected genus %ecoboraz‘sm between Li and Lz,

then He(8) is 0 homogeneous mop between HILi) and H(La) of
bidegree (0. -29). Hence:

He(S) : He(L P —— He (L™

IS IS
Af+Sil} Af-1+S(L}

which, written out componentwise . is of the J%rm:



-1+8(L) +6 —

> <« dG\}=—H-S(Lz)+6
X

: ) <—d€g=~1+S(Lz>+4
Vs

-1+ SL)+2 — « d€8=—l+S(L:H-2

\
s
(4

-1+8(L) =

<« deg= -1+ 8(L2)

Setling t=x*=1, and toRing homology. we should recower the
non-trivial homomorphism of  Lee's homology  groups:

-2 5 [ Q) = Q| <« dg=-1+&La)e2
D BA S

-ty = | Q| <« dg=-1+«la
IIs IS

For the amows to define non-trvial homomorphisms . we rmust have
—l+S(Lz)_<_—1+S(L:)+28



Viewing S backwards as a cobordism Jrom La to Li yields
I8y = -1+ 8(L2)+29

Combined, we obtain:

Thm. 4. (Rasmussen).  18(L) -S(La)l £ 24

a
Rmk: The Rasmussen inuariont iS a homomorphism fmm the Rnot
concordonce group to 2£. Two knots L. L2 are said to be
concordant if there is an anuus T (X(M=0) such that

ST = L.l L [

Thus the thm implies that , Concordant Rnots have the Same

Rosmussen invariant. To show that it'S a homomorphism, one
needls to Show that

SCLi# [L2) = S(Ly) + S(L.1).

This follows from the fact that, for the connected sum of two
Rnots L, La,

Celi#L2) = Cetl) ®4 Ce(La)

, : A -module Structure comes
‘ L Jrom merging Circles at o0 .

L

In the previous Section. A
corresponds to H'= 2CX1/ex?)

So that He=(L#ls) . and thus Hueelli#12) inhert the Qradfng
shft {8+ Sy,



Rosmussen's proof of  Milnor's conjecture

Given ony Rnot L < &, it bounds an orentable surface % . The
Y with the minimal genus 8 called the Seifert sutface of L .

This minimal genus is denoted gL. Furthermore, i we regard

S as the boundary of the 4-tall B, and if we allow 3 to

be inside B while fixng dZ =L <8 to be our given knot, we

could potentially get a surface with a. smaller genus. The smallest
such genus is colled the 4-genus of L. denoted Gul).

Cor 5. S| € 2-8all)

Pf: Indeed, by cutting a small disk out of a minmal bounding
surfoce in B* it can then be regarded 6S a Cobordism from
the tnvial Rnot Lo to L. Since StLey=o0, thm 5 says that

IS(LY) = 1StLe) - Sthal £ 2-Ga(L)

O

In general, it's a hard problem to compute the 4-genus of a
knot. Milnor conjectured that , if L is o positive Rnot  di.e.

L odmits an oriented  projection diagram D with only positive

crossings) , then Gul)=gLr= z(n-c+n). This was first proven
by Kronheimer and Mrowka using sophistiaated methods gf gouge
theory. In this subsection we gue Rosmussen's combinatorial

proof.

First off, it's easy to see that, for any positive Rnot L with
Q positively oriented  diagrom D,



where N is the number of (positive) crossings in L. and ¢ is
the number of components when one resolues all crossings of
D in the onentation compatible (0~ resolution) way.

S =

Eg. Consider the positive knot

3

Its orientation compatible resolution i8 given by:

L

which has 2 comporents. There is an obuious orientoble Surface

boundmg L
<

whose genus S |,



In general, there is an obuious orentable Suffice > bounding
L. obtained by shading regions of a positive crossing in- the

WoyY:
DA

and toking the shaded surfoce X Its genus g(Z) con be
computed from its Euler characteristic X(S):

%(Z)=O<(@)
= ’X(@QH - % DA

—ni+c XD
=n-¢C

= g5 = A&
(Recoll that 2-2g- # (components of 93)= (X)),

Thus by definition, we have a tnuial bound:
uly < guly ¢ DLt



Thus it Suffices to check that

Oa(l) > D=CxL

To do this, we will prove that siy=-"EL  Then the resut
will follow from Rosmussen's thm. cthm. 4.

Indeed. in our construction ¢of CeDy, the chain complex C+(D;
of a positive diagram always Sits i non-negative homolagical
degrees , since |
Ct(D) = Ct(D) IXD) {2X(D)-yD»}
ond XDy = # negative crossings in D, which is O for D positive.
Then, Cx(D) starts with

0 —s Ae’c_d_> @, ®(c-n__>m

where A= Qcx3 and the tensor product iS taken over Qrta, 8o
that A% is a free Qct1-modue of rank 2¢ The term A%
Sits in homological deg O and ¢ hos the same meoning as
before. The homological degree 1 -term i just n-copies of A%
since changing any O-resolution to . I-resolution merges two

0=

N\
X &



Then . using o standord combinatorial argument, we con aSSIgN
a sign t1 to each qc the ¢ circles in the o-resoution, S0
that every component of d comes from menging two circles in
the o resolution with opposite signs. We illustrate this with
on example of the unknot diagram:

(X0

Now we poss back to the ordinory Khovonou homology (t=1).
Consider the element

o= Zicsinthe SN X®X® - X®I®X - ®X

Then this element maps to o wder d. since we ore alwgys merging
circles with oppos(te Signs .



|1 @X®X - X®I®X+ X@X® | > O-X®X+ X®X=0

KOX- XX + O

It follows that o represents a non-trivial cohomology class . As
a Qrx1-module, HF(L) must be gererated by lifting of this
cohomology closs , which is of degree -
dege = ((C-)-dlegx +deg(1y) + (2X(MD)-ym))

=(C-n:1-1+ 2:0-N

= C-2-n.
Thus by def of s, we have

-1+ 8Ly =C-2-n

= Slb)y=C-1-n.

Then cor. 5 implies that

gall ZIS(ZL)I > <

n

- -
2

Combined with the ensier half of the inequality, this finshes the
proof of  Milnors - conjecture.

RmR: The Rasmugsen inuariant of @ knot is, in general, very hard



to compute. Besides positive Rnots. we know Sy for alfemating
Rrots , which egudls the Signature oLy of the knot (Rasmussen),

Lee's homology theory
In this subsection, we gue a sRetch of prog” of Lee's thm. (thm.h.

Recoll that the chain complex G(D) for any tangle diagram D 1S
constructed using the 20-TAFT “t-theory”, which 8 associated
with the commutative Frobenius algebra ZCx1 ocver the base
ring Zctl.

Then Lee's homology theory con be constructed from the quotient
Frobenius algebra. QX1 /(t=n=QIx1/(x*=1) over Qrtl/ct=n =@,
which is in foct a Semi-simple algebra

Qoxa/ix=n = Q555 & Q2L

X-l a X+l A
2

where —z-=a. 73~ =b are orthogonal (dempotents. Using the
explicit formula. Jor the multiplication and comuttiplication in t-
theory, one con see that the aboue decomposition is in fuct
0. Oecornposition of  Frobenius olgebras:

AQ)y=200®Q

Aby=2beb
Thus ., “t-theory”, when mod (t-1, becomes two orthogonal
TOFT's .

Using this decomposition. one con construct explicitly the oo
generators in Lee's homology groups of an oriented link L. Ore



Storts with an oniented  diagram D, and forgefs obout (ts old
orientation. Then we orient it in all 2% ways , and for

each particulor orientation, we resolue it in the unique orientation
compatible ey (o-resolution) :

N /!

Ko=) =X
Then, we ossgn o and b to cirdes, So that any cirdes  that
are merged in the 1-resolution, are assigned oifferent leffers:

(0>

The unique
l compatible
O- resolution

w (G .
YN
o @5

Then. the tensor product of these elements define a cyde in the
chain complex. An induction on the total number of arossings in



diogrom D shows that all these cycles Survive in homology and
they spon  Hiee(L).

Some  interesting problems
0. Con one extend the Rasmussen inuariant to torgles ?

@. Ty to uncerstand Lee's theory for tangles. How 0o we build
orologues of H" . complexes of bimodules ete.

@). There is Q natural braid group action Bran on Comp(H",
guen by sending O broid group generxtor:

e | X

to the functor of tensoring with the complex of H" - bimodules

F(oy) associated with the tangle Tt
Is this action faithful ?

2n

. Connect positivity N the CaTegorg @” tongles to the positivity
n the category of complexes, A tangle is called positive if it
admits an oniented diagram with only - positive Crossings. A complex
s positive if it's homotopic to a complex with terms only in non-
negative homolagical degrees.

We hove seen that in the prodf of Milnor's conjecture, & Rnot
S positive implies thoat (ts chain complex C(D) is positive. I3



the conuerse true ?

This question is olso related to braid group actions on denved
cotegories of Coherent sheaves on- certain Springer uanieties. See
the works of Cautis - Kamnitzer.

). Categorification of  30l- geometry

(e still don't know how to extend link inuaniants to 3d geometry
inuariants . One major step would be to coregonify R os a Nng.
(it is Rnown that KolIi-factor) = IR, but just a8 an abelion group),
l.e. One needs a monoidal category G st Ko(G) =R as a nirg.



