34 Morita Theory
In this section we gue o brief review of Monita equivalences
onad its derived analogue.

Morita.  equivalence
Let A. B be rings.

Def. A.B are soid to be Morita equivalent ' their modlule
categories are equivalent as abelian caregonies.

In cother words. there are j&ncfors

].__.
=X

S.T. I:’°F’:E IdA-mod, FoF'= Idg-mod .

In the mse of the def, F takes the left A-module aA to
ome B-module sF(A). But A is also a rmight A-modu,

and right multiplication by elements of A commutes with the
(eft A - oction | i.e. m‘ght multiplication bg elements gf A is q
(@Et A-module endomorphism. Thus A also acts on sF(A) on
the right SO that sF(A)a is a (B, A)- bimodule, S(mflar*tg,
we obtain the (A, B) -bimodule aF(B)s.

Lemma 1. F is determined by F(A).
Pf: For any A-module M. choose a presentation:



AT AT — M — 0
Since F is an equivalence, it praserues ©actness -
FA®)— FA%)— FIM) — 0
F also preserves direct Sums ccolimits) Since this is &
cotegoricol notion =>
=A™ — FAYY — FIM) — o

—> The module FIM) is preseribed.

Notice that in the aboue progf we didn't need F to be an
isomorphism, but only used that F is additive, night exact
and  commutes  with toring colimits.  We obtain -

Cor. 2. Any additive, right exact functor
F: A-mod — B-mod

which commutes Wwith ﬁr*m(ng comits [s giuen bg Tensom‘nﬁ
wWith a (B,A)—bfmodu[e BNa (= gF(A)a).

Hence in the situation of the def., we have
F(-) = aNa®a -
F(-) = ANB®;s -
and - moreouer,
NesN=A as (A A)-bimodules
N® N=8 as (B, B)- bimodules .



Recall the foHouo[ng general fact: If A.B ae nings,
Home (gNa ®M, sL) = Homa(aM, Homa(aNa,sl))

In the Situation of the def’ of Morita equivalence, we obtain:
Homa (aM, aNs®sl) = Homa(aNa®aM , 8Na ®a N ®sl )

Homa (BNA ®M, sL)

Homa(aM, Homa(sNa, 8L)) ,

which implies the Somorphism Qf functor&

ANg ®s - = Homg(sNa, -)

e N

Cor 3. eNais a compoct object in B-mod, i.e. Home(sNa, -)
preserves  tORINg direct SUMS  ( colimits). O

=x. Show that an object in B-mod is compact iff it's finitely
generoted as o B-module.

Rmk: Compoct objects ore also known as “perfect objects”,
especially in cerived categories.

Since sN=F(A) is also the image of a projective module, it's
thus a finitely generated projective  B-module. Moreover, by
regording sNa as an (A, B™) -bimodue. 4N as a (B, A®) -
bimodule, we obtain the aboue resuts for right module cotegories
as well. In porticular, sNa is also o ﬁm‘fey generated , projective
right  A-module.



Next. observe thot:

B =~ Ends (Bs. BRs)
=~ Homa(Be ® N4, B®sNa)
= Enda(gNa)

— B = Enda(aNa) .
(We summanze the obove discussion in the jbl[own‘ng-.

Prop. 4. Two rings A.B are Morita equualent jff one of the
Jollowing - equivalent  conditions  holdt
. The” left module categories A-mod = B -mod
). The nght module categonies mod-A = mod-B
@. There is a finitely generated projective right A-module Na
st NA 2 A for some relN, ond

B =~ Enda(Na) o

Prop.5. If A. B are Monta equiudlent, then Z(A) = Z(B).
Pf: The center Qf a ning 18 a cateqorical notion: it's the
endomorphism ring of the identity functor of the module
CUI@QOY‘H :

Z(A) = End (IdA-mod) . O

Morita equivalence for artinian nngs

In this subsection, we will construct all nings that are Monto,
equivalent to an artinian ring A,

By eorlier results in 84 we Rnow that an artinien nng A.



s a right module over f‘fsey”, I8 isomorphic to
Aa= D icx pl_er"c

where {Pitier s the iSomorphism classes all indecormposable
projective right A-modules. Thus by (3) of Prop 4, we have:

Cor.6. Any ring B that is Monta equivalent to A is of the

Jorm:
— ni
B = Enda(@D ie: Pie )OP,
where ni are positive ntegers. O

Thus when people Study representation theory of  finite dim'l
algebras, they try to down-size the nngs as much as possible
o look ﬁ)r‘ categonaal inuanonts ¢ see Prop 5 J%r\ instance). So
one takes the Morita equivalent ring:

B £ Enda( @ietP)®,
which 18 the smallest possible one among such rings.
E. g

(. Any matrix ring MnfA) is Morita @quivalent to A itself. This
WOrRs for any ning, not just for artinian rings.

). Let A be the block upper triangular matrices with n  diagonal
blocks o various Sizes.



Y
A= 7
Y

One con check that a complete set of non-isomorphic indecom-
posoble  projective modules i given by

i

Enda Pi =k

N\
N\

N

%

EXIESS

ond

Homa (P, P=

ki g
(O DC[U'

Thus A is Moritn equivalent to the nxn upper tangular matrices.
or equivalently. the path alebm of the quiver

—————0
| 2 n

3). There iS a closs @C ﬁnn‘e dimensional aﬁebms in representation

theory, that are the Smallest possible in ther own Morite
equivalence Classes. These are the algebras all of whose simple

moaules are [-dim(, or equfualeﬂﬁg, AlJacA) = kx-—~x k. Such
olgebras are called  basic algebras . Exomples include path agebras,
commutative algebras  over algebraically closed flelds ¢ kI31 when



@ is abdion, HYIX.k) when X is a finite CW complex etc).

Locolization of  categonies

In this subsection we briefly review how to loadize categories and
thus obtain the derived caregonies of abelion categories & by
localizing  Comptd).

Def Let B be a caegory. A class of morphisms S Mor(8) s
colled @ localizing class if:
n. S is multiplicative, in the Sense that Y Xe Ob(B), Idxe S
ond if 8.&:€S. 38:6Mor(B) , then 8S:€S.

2). Gziven any diagram:
X

x -5y

with Se S (we will use oronge arrows to dencte morphisms in S,
we n complete it iNto & Square, 6. 3W.Qg, T 8t teS and:

W - 2
®
x = Y
Sfmf[artg, we con complete diagrams
4 W e Z
— Q

X e— Y X — Y



3). (iven X:———;C_’>Y. There exists & :Z X st. fs=gs8 [ff
there exists t:Y Wost tf=1g.

Rmk: e will J%rma(lg invert all morphisms in S, So that a
Ohagf‘am
2z Z
(resp. )

x -5y X <Ly

formally represents a morphism S'f: X — 2 (resp. gt* 2
— X). Condition (20 above is to guonrantee that when we are

composing Such morphisms  s'f., s3fs, we an find & “common
denomingfor” for s and Sa.

Def. (Localization of B with respect o S,

We define the locolization of B with respect to the localizing
closs S to be the category BLS™1 with:
ObBrLs™1= 0bB

X
Mor (X, Y ) £ { N (éfS"),SES,fGMOY‘foX':Y)}/m
X Y

where fs*~ gt* iff 3 X" and arrows making the oliagram  below
commute :

xlll

\
X’\é”\g
X Y



Compogition of morphisms i defined 0s follows . Given f":X —Y,
gt Y -2,

X Y
NN
X Y Z
we con find X' and armows by property 2 of S:
X/I
\D
X'y
NN
X Y Z

By property n of S. sereS. and the composition is defined to
be:

x/
\goh
X Y

One can check that “~" is an equivalence relation, and that the
composition 8 well-defined and associative . We will check the
composition, and leaue the rest aS exercise.

Suppose e have 1. ra, g 9 ST the diagram commutes

\\9‘2

\ ﬁ‘
X Y



We would like gri'~gr' 8o that fgirsi'~JRgri'si. We con
complete X"~ X' < X" irto a. squore, using property 2 of S,
SO that et = npeh.

x‘l—

\N

XX
N\QA 2
/ \r /
NN
X Y Z

Then Sa20:h =firah =finti=8:gt . Property 3) of S implies that we
con find ta: X& — X* st gitita=gahts:

X

XS
x4-
\!
XX
N\z
X' Y’
SN,
X Y Z .
Showmg tha-t erf'fv erz_l, O

Rmk: The proof  that BLS™1 is well-defined consists of *filling up



diograms with directed cubes” An interesting problem would then
be whether there IS Some Sort gf “directed  homotopy fheorg " that
I8 hidden behind.

Now, let & be an obelian category. Recall that we con form the
abelion category of chain complexes in A, denoted Kom (&), Then
by modding out all nul-homotopic Chain maps we obtain the
category Com 4 of Chain complexes up to homotopy . It is no
longer abelian,  but additive and triangulated . The cohomology
Junctor H*: Kom(8) — & descends to (om4& and a
morphism fi M—N is called Q Quas(- [SomorphiSm (qis) in both
Komptd) ond (Com () UD

HA ) Hf M) = HAN)

Prop. 7. (. S=1{gis} is a (oca(fz(‘ng class in Com(”) (but
not in KomdH).

(0). D12 Com (8)L8™1, the derived category of A& IS addlitive
ana Triangulafed.
Sketch of pf.

One just checks the ogf. of a localizng closs. A usefil tool is
the cone construction in Kom Ky / Com (&Y. For instance. to
check v, we are then guen maps of chain complexes:



The Way to produce & Squore would be to regord
xoz 43y

0s mops of chain complexes ana shift the degree by C-11. In
other woords, we just complete the diagram by:

[,z

x —£5 Yy

and the mops are the obuious projections. The diagram is only
commutative in Com 4 .

To check 2 we note that Since Comidy is additive. it suffices
to Show that

Z X—J—Cﬂ’ - fe=o in (omed {ff IW.t:Y W

X—JC—>Y ENE tf:o n Com(4)
W is then Constructed as the “cone” of z - X L, namely
the total complex of W is just Z1@XnleY with differentials

Oz. ok, dy and 8. f. fes with oppropiate Signs. In other words,
W con be regarded as:

z 5x-Ly Yz xLy)

J

W
Agm‘n tf=o is only true in Come&y but not Kom (8 O



Rmk: People Rnow how to loalize commutative nings and categores,
but not much is done about the intermediate case , namely (ocdlizing
non-commutative Nngs. For instance, it's Rnown that for the
ﬁPST eyl al@ebm

A= C&x,0x> /< QX - %-Ox-1>
the get S=Allo} is localizing. But not much is Rnow about the

localized a@ebm ALS™1. It's a risky but rewarding areo Qf new
math to be explored.

In summary, throughout the process of " (ocalization, we pass
from any abelien category A to its derived mfegory D4y
which is additive, Tr‘fangulm@ol (See the next Subsection) .

A ——s KomA) —— Comxd) —— D)
Furthermore . X ﬁdlg and j&fthfuﬂg embeds in D)



