§ 9. Morita Theory

In this section we give a brief review of Morita equivalences and its derived analogue.

Morita equivalence

Let A. B be rings.

Def. A.B are said to be Morita equivalent if their module categories are equivalent as abelian categories.

In other words, there are functors

$$A-\text{mod} \overset{\mathsf{F}}{\underset{\mathsf{F}'}{\longleftarrow}} \mathsf{B}-\text{mod}$$

S.t. F'oF = IdA-mod, FoF' = IdB-mod.

In the case of the def., F takes the left A-module $_AA$ to some B-module $_BF(A)$. But A is also a right A-module, and right multiplication by elements of A commutes with the left A-action, i.e. right multiplication by elements of A is a left A-module endomorphism. Thus A also acts on $_BF(A)$ on the right so that $_BF(A)_A$ is a $_AB$ -bimodule. Similarly, we obtain the $_AB$ -bimodule $_AF'(B)_B$.

Lemma 1. F is determined by F(A). Pf: For any A-module M, choose a presentation:

$$A^{\oplus J} \xrightarrow{\varphi} A^{\oplus I} \longrightarrow M \longrightarrow 0$$

Since F is an equivalence, it preserves exactness:

$$F(A^{\oplus I}) \longrightarrow F(A^{\oplus J}) \longrightarrow F(M) \longrightarrow 0$$

F also preserves direct sums (colimits) since this is a categorical notion \Longrightarrow

$$F(A)^{\oplus I} \longrightarrow F(A)^{\oplus J} \longrightarrow F(M) \longrightarrow o$$

 \implies The module F(M) is prescribed.

Notice that in the above proof we didn't need F to be an isomorphism, but only used that F is additive, right exact, and commutes with taking colimits. We obtain:

Cor. 2. Any additive, right exact functor

$$F: A-mod \longrightarrow B-mod$$

which commutes with forming colimits is given by tensoring with a (B,A)-bimodule BNA (= BF(A)A).

Hence in the situation of the def., we have

and moreover.

$$N' \otimes_B N \cong A$$
 as (A, A) -bimodules

$$N \otimes_A N' \cong B$$
 as (B, B) - bimodules.

Recall the following general fact: If A, B are rings, Home ($BNA \otimes AM$, BL) \cong Homa (AM, Home (BNA, BL))

In the situation of the def. of Morita equivalence, we obtain: $Hom_A(_AM, _AN_B'\otimes_BL)\cong Hom_B(_BN_A\otimes_AM, _BN_A\otimes_AN_B'\otimes_BL)$

≅ Homb(BNA ⊗AM, BL)

 $\cong \text{Hom}_A(AM, \text{Hom}_B(BNA, BL)),$

which implies the isomorphism of functors:

ANB ⊗B - ≅ Home(BNA, -)

Cor 3. BNA is a compact object in B-mod, i.e. Homb(BNA, -) preserves taking direct sums (colimits).

Ex. Show that an object in B-mod is compact iff it's finitely generated as a B-module.

Rmk: Compact objects are also known as "perfect objects", especially in derived categories.

Since BN = F(A) is also the image of a projective module, it's thus a finitely generated projective B-module. Moreover, by regarding BNA as an (A^{op}, B^{op}) -bimodule, AN'B as a (B^{op}, A^{op}) -bimodule, we obtain the above results for right module categories as well. In particular, BNA is also a finitely generated, projective right A-module.

Next, observe that:

B ≅ Ende (Be. Be) ≅ Homa(Be⊗e Na. B⊗e Na) ≅ Enda (eNa)

 \Longrightarrow B \cong Enda(BNa).

We summarize the above discussion in the following:

Prop. 4. Two rings A, B are Morita equivalent iff one of the following equivalent conditions hold:

- (1). The left module categories A-mod $\cong B$ -mod
- (2). The right module categories $mod-A \cong mod-B$
- (3). There is a finitely generated projective right A-module NA s.t. $N_A^{\oplus r} \supseteq A$ for some $r \in IN$, and

 $B \cong End_A(N_A)$

Prop. 5. If A, B are Morita equivalent, then $Z(A) \cong Z(B)$. Pf: The center of a ring is a categorical notion: it's the endomorphism ring of the identity functor of the module category:

 $Z(A) \cong End(IdA-mod)$.

Morita equivalence for artinian rings

In this subsection, we will construct all rings that are Morita equivalent to an artinian ring A.

By earlier results in $\S4$, we know that an artinian ring A.

as a right module over itself, is isomorphic to $A_A \cong \bigoplus_{i \in I} P_i^{\oplus r_i}$

where {Pi}ieI is the isomorphism classes of all indecomposable projective right A-modules. Thus by (3) of Prop 4, we have:

Cor. 6. Any ring B that is Morita equivalent to A is of the form:

 $B \cong Enda(\bigoplus_{i \in I} P_i^{\oplus n_i})^{op}$,

where ni are positive integers.

Thus when people study representation theory of finite dim'l algebras, they try to down-size the rings as much as possible to look for categorical invariants (see Prop 5 for instance). So one takes the Morita equivalent ring:

 $B \triangleq End_A (\bigoplus_{i \in I} P_i)^{op}$,

which is the smallest possible one among such rings.

E.g. (1). Any matrix ring Mn(A) is Morita equivalent to A itself. This works for any ring, not just for artinian rings.

(2). Let A be the block upper triangular matrices with n diagonal blocks of various sizes.

One can check that a complete set of non-isomorphic indecomposable projective modules is given by

and

Enda
$$P_i \cong \mathbb{I}k$$

Homa $(P_i, P_j) \cong \begin{cases} \mathbb{I}k & \text{if } i \leq j \\ o & \text{if } i > j \end{cases}$

Thus A is Morita equivalent to the nxn upper triangular matrices. or equivalently, the path algebra of the quiver

(3). There is a class of finite dimensional algebras in representation theory, that are the smallest possible in their own Morita equivalence classes. These are the algebras all of whose simple modules are 1-dim'l, or equivalently, $A/Jac(A) \cong lkx - x lk$. Such algebras are called basic algebras. Examples include path algebras, commutative algebras over algebraically closed fields (lkiGi) when

G is abelian, H*(X,1k) when X is a finite CW complex etc.).

Localization of categories

In this subsection we briefly review how to localize categories and thus obtain the derived categories of abelian categories & by localizing Comp(A).

Def. Let $\mathcal B$ be a category. A class of morphisms $S\subseteq Mor(\mathcal B)$ is called a localizing class if:

- 1). S is multiplicative, in the sense that $\forall X \in Ob(B)$, $Idx \in S$; and if $s_1.s_2 \in S$, $s_1s_2 \in Mor(B)$, then $s_1s_2 \in S$.
- 2). Given any diagram:

with $s \in S$ (we will use orange arrows to denote morphisms in S), we can complete it into a square, i.e. $\exists W, g, t s.t. t \in S$ and :

$$\begin{array}{ccc}
W & \xrightarrow{g} & \mathbb{Z} \\
\downarrow_t & \bigcirc & \downarrow_s \\
X & \xrightarrow{f} & Y
\end{array}$$

Similarly, we can complete diagrams

3). Given $X \xrightarrow{f} Y$. There exists $s: Z \longrightarrow X$ s.t. fs = gs iff there exists $t: Y \longrightarrow W$ s.t. tf = tg.

Rmk: We will formally invert all morphisms in S, so that a diagram:

formally represents a morphism $s^-if: X \longrightarrow Z$ (resp. $gt^-i: Z \longrightarrow X$). Condition (2) above is to guanrantee that when we are composing such morphisms $s_1^-if_1$, $s_2^-if_2$, we can find a "common denominator" for s_1 and s_2 .

Def. (Localization of B with respect to S). We define the localization of B with respect to the localizing class S to be the category B[S] with:

Ob B[S"] = Ob B

$$Mor(X,Y) \triangleq \left\{ \begin{array}{c} x' \\ y \end{array} \right. (\triangleq fs^{-1}), s \in S, f \in Mor_{\mathbf{B}}(X',Y) \right\} / \sim$$

where $fs^{-1} \sim gt^{-1}$ iff $\exists X'''$ and arrows making the diagram below commute:

Composition of morphisms is defined as follows. Given $fs^{-1}: X \longrightarrow Y$, $gt^{-1}: Y \longrightarrow Z$,

we can find X" and arrows by property 2) of S:

By property 1) of S, $s \circ r \in S$, and the composition is defined to be:

One can check that " \sim " is an equivalence relation, and that the composition is well-defined and associative. We will check the composition, and leave the rest as exercise.

Suppose we have r_1, r_2, g_1, g_2 s.t. the diagram commutes: X'' X'''

We would like $g_1r_1^{-1} \sim g_2r_2^{-1}$ so that $f_2g_1r_1^{-1}s_1^{-1} \sim f_2g_2r_2^{-1}s_1^{-1}$. We can complete $X'' \xrightarrow{\Gamma_2} X' \xleftarrow{\Gamma_2} X'''$ into a square, using property 2) of S, so that $r_1 \circ t_1 = r_2 \circ h$.

Then $S_2g_2h = f_1r_2h = f_1r_1t_1 = S_2g_1t_1$. Property 3) of S implies that we can find $t_2: X^5 \longrightarrow X^4$ s.t. $g_1t_1t_2 = g_2ht_2$:

showing that $g_1r_1^{-1} \sim g_2r_2^{-1}$.

Rmk: The proof that BES-1 is well-defined consists of filling up

diagrams with directed cubes". An interesting problem would then be whether there is some sort of "directed homotopy theory" that is hidden behind.

Now, let $\[\mathcal{A} \]$ be an abelian category. Recall that we can form the abelian category of chain complexes in $\[\mathcal{A} \]$, denoted $\[\mathcal{K} \]$ of the category $\[\mathcal{A} \]$ of Chain complexes up to homotopy. It is no longer abelian, but additive and triangulated. The cohomology functor $\[\mathcal{A} \]$ we descend to $\[\mathcal{A} \]$ and a morphism $\[\mathcal{A} \]$ is called a quasi-isomorphism (qis) in both $\[\mathcal{K} \]$ and $\[\mathcal{A} \]$ and $\[\mathcal{A} \]$ and $\[\mathcal{A} \]$ and $\[\mathcal{A} \]$ if:

$$H^*(f): H^*(M) \xrightarrow{\cong} H^*(N)$$

Prop. 7. (a). $S = \{qis\}$ is a localizing class in Com(A) (but not in Kom(A)).

(b). $D(A) \triangleq Com(A) [S^{-1}]$, the derived category of A is additive and triangulated.

Sketch of pf.

One just checks the def. of a localizing class. A useful tool is the cone construction in Kom(A)/Com(A). For instance, to check 2), we are then given maps of chain complexes:

The way to produce a square would be to regard $X \oplus Z \xrightarrow{(f,s)} Y$

as maps of chain complexes and shift the degree by [-1]. In other words, we just complete the diagram by:

and the maps are the obvious projections. The diagram is only commutative in Com(A).

To check 3) we note that since Com(A) is additive, it suffices to show that

$$\| Z \xrightarrow{S} X \xrightarrow{f} Y : fs = 0 \text{ in } Com(A) \text{ iff } \exists W, t: Y \longrightarrow W$$

$$| X \xrightarrow{f} Y \xrightarrow{t} W : tf = 0 \text{ in } Com(A)$$

W is then constructed as the "cone" of $Z \xrightarrow{S} X \xrightarrow{f} Y$, namely the total complex of W is just $Z[2] \oplus X[1] \oplus Y$ with differentials dz. dx, dy and s. f. fos with appropriate signs. In other words, W can be regarded as:

$$Z \xrightarrow{S} X \xrightarrow{f} Y \xrightarrow{idY} (Z \xrightarrow{S} X \xrightarrow{f} Y)$$

Again tf=0 is only true in Com(x) but not Kom(x).

Rmk: People know how to localize commutative rings and categories, but not much is done about the intermediate case, namely localizing non-commutative rings. For instance, it's known that for the first Weyl algebra

$$A = \mathbb{C}(x, \partial_x) / \langle \partial_x \cdot x - x \cdot \partial_x - 1 \rangle$$

the set $S=A\setminus\{0\}$ is localizing. But not much is know about the localized algebra AES^{-1}]. It's a risky but rewarding area of new math to be explored.

In summary, throughout the process of localization, we pass from any abelian category & to its derived category D(&), which is additive, triangulated (see the next subsection).

$$A \longrightarrow Kom(A) \longrightarrow Com(A) \longrightarrow D(A)$$

Furthermore. A fully and faithfully embeds in D(A)