82. Topological Quantum Field "Theories

Cobn and n-d TQFT

First, we oescribe the category Cobn. It has os:

0y, objects : closed oriented (n-11-dim! monifolds

@. morphisms: oriented n-manifolds with boundaries (up to
diffeomorphism relative to boundories ), which are regorded as
morphisms from the incoming bounday o the autgoing boundary :

O O™ aN=-MeUM
v where Mo meons Mo with
Mo the opposite orientation .

The identity morphism idw is guen by the product monifold Mxto.i1:

J.

Composition of morphisms are given by g[uing manujblols-.

NN

(3. gymmetric monoidal structure, given by disjoint union of
objects and morphisms , with the empty -1y manifold as
the monoidal unit -
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«©). The assoa‘m‘iuhy of L
(l\/\ll_l Mz) LJ l\/\s = M\ U(M2 UMS)
together With vanious oherence tonditions on these Structures.

(the br‘ajding)

Def. (n-d TQFT) An n-d TQFT is a tensor (monoidal)
functor from Cobn to some odditive symmetric monoidiol
cotegory (i . functor preserving @, . ey aboue , €. the
Category of lk-uvector gpaces with the usual tensor structure).

Thus. an n-d TQFT F genos:

F(MiLIM2) =F(M) ® F(Ms)

M, M2

O ()

v L I = /‘\F(Nlu N2) = FINN® FINa)
M Ma

FIMiLM2) =F (M) ®F(M2)

Notice thot it's ensy to construct / Classg@ | and 2d TQFT's.
But 3d TQFT is much harder. (e will most(g be dealmg With
these coses in this course. For 40 TGFT's, only some toy



models are known and begond 40. no interesting example (s
Rnown .

id TQFT's (over afie(d k)
There are only two connected oriented o-dim{ manifoldls:

o', ¢}

Cobordisms  between © diml manifolds are just oriented |
manifolds
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The “cup” and “cap” in the opposite orientation con be constructed
by twisting:
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Now let F be ony I1d TQFT, and set V=F(e™), W=F(e), and
it follows from the monoidal unit axiom @ that F(@) =l the
ground field. Then jor the cup and cp. we get:

+ + \% V
T TID\V®B
S N0 VN Gy = VOWeV
il foeny
+ + \Y \

e T =tdv@pic@ldy. If we set o) = X% Vi®uwi, we get
that v ue V,

= (Idv ® B) (X ® Tdv) (L)

= (Iov® B)(é,u;@wa@u)

= 55 Ui BWi®U)
In particulor, V is spanned by {ui. i=i-.n}. Similardy. using the
oJTCher pair of cup and cop, we obtain the finite dimensionality
o7 W.

Lemma |. Both V and W are fniie dimensional . O
USmg ok — Vew and B: WOV — Ik, we get transposed mops

& V'— W, B:W— V. Then
Ioy = (TIov® BN @ Idv) <=> Boot'= Iv'=> dimV=dmV* < dimW.



Similarlg, reversing ol the amows and Signs i the pictures. ore
obtoins  thot:

dimN € dim V™ = dimV |
Combined, these giue:

Lemma 2. o' VEs W B W =V are isomorphisms of
finite-dimensional - vector 8paces. o

Using the identification B’ + W —=>\/™, we obtain the cononiaal
forms of o and B: |

2 k—s VeV* | | —s S o 0k

8: VoV —k , vew* — whu) |
where {eit is o basis of V ond {ef} its dual.

Eg w. Look at F(O): k —k which is just & number. Then
FOOY = FIM) R F(W)
= et
= oimV
Here we used the foct that

Q=N

which , without regard to ambient Spaces , could olso be depicted as

Q-1

2. Let's apply F to the cobordism at the beginning Qf the Section:



T — VeV e \Ve\V!
F ( \\J ) = dimV- GO ® Tdv*
O

Vo~

(We summarize the aboue discussions into:

Thm3. We have a biection of gets:
{ d TQFT's ouer] - {F—‘me dim' Ik-}
) field lk vector SpaCes

Unoriented  1d TQF T

Without orientation, there is only one connected O- rrm‘fo(d ,
nomely a single point. Going over similar orguments as before,
if Fis an unoriented 1d TQFT /k, then

). Fle) =V, a finite dimensional k-space :

(). Vev
F(?) = ! .o distinguished  Symmetric element ;

lk

FCEV=1  a symmetric non-degenerate bilinear Jorm.
VeV

The symmetries come from:

KL=/,



and the bilinear form s non-degenerate: since

-

It aiso follows from this that, if we dencte the dlistinguished
element by TOjuiey; , and the bilinear form by > bjuiey
with respect to some basis {uit of V., then

[Qij1 = Cbij1™
ond the matrices [0i1, oyl ore ymmetric. Hence we haue
Show that :

Thm.4. We hove a bijection of sets:
Unoriented 1d- Finite dim'l k-spaces
{ TQFT'S over with a non—degenemte
0. fleld Kk symmetnic bilinear form

>

O

=x. Clossify genemlized 1d- TQFT's where cobordisms are
Cllowed to end in the middle:

WA

2d TQFT's (over a Jield lk)
Before specializing to 20, we first prove o genenal result:

Lemma 5. Let F be ony n-d TQFT and M a closed. oriented



(n-1 dim'l_ manifold. Then dimk F(M) <00,
Pf: For any MeObtCobn) we an construct a functor
CM k Cob; B Cobn,
Oefined as follows:
on objects:
°— M 3 o — -M
on Morphisms:

o O f e O
VIS\ARTATEN)

Now composing Fwith Cv we get a 1d TGFT, which assgns
Folu(e™) = F(M).
Then we are done b\q lemma. 1. .

Now we looR at Coba, whose objects ore multiple copies of circles:

Ob((oba) = {OOY O
m

ond whose morphisms are glued from the following basic pieces -

@ Cup ) @ ap

MEXZ>0




O
A pants ‘ copants

Suppose F is a 20 TAFT/k. We define the fotlowing;

F(O):A

Tl
I
>
® >
> >
S
S
=
=z
[}
2
S
>

Then the following relations imply -

O q
A = ;> m°([®l‘dA§=I.dA A__>A

Next .




LS i L

e. A is an associative algebm. It's also commutative ty considerz‘n3=

- @
A = A (They are diffeomorphic
l I by toking @ tuist ')

Similarly by using the copants, we @n show that A is also o
cocommutative coalgebm.

Furthermore . by gluing the cap and the pants. the cup and
coponts, we obtain the U-tums

NIRAY

which gue rise to the relation:

(A -

! NP
It follows just as in the 1o TAFT ose that €om is @ symmetri,
non-degenerate  bilinear form on A (non-oegenerte meoring that

VOeA, a#0, 3beA st gaby+0)y. In porticular, A =A* via em.
Under this identification. we see j‘omz



.

that the comultiplication A S just the dudl of multiplication:
A A AT (ARAY o Ao A* = ABA.

It follows that A is a map of (A.A)-bimodules Since m is. But

thig also admits the fo ow:rg pictorial procf

UK Y

The aboue discussion reminds us of Some basic notions of  representation
theory:

Def. Let A be o unital, assocative, finite dim! k-olgebra.

N. A i called Frobenius f 3e:A—1k a non- Oegenerate ﬁrm
colled the trace. Here non-oegeremate meons that vaeA. a#o.3beA
st £ab) #0

3. A is colled symmetric Frobenius if E@by=&ba), ¥a.beA,

3. A is alled commutative Frobenius UC it'S commutative and
Frobenius .

It follows from def. that



Frobenius
Symmetric Frobeniys

Commutzetive
Frobenius

All the discussions aboue lead to the J%Uooozhg:

Thm 6. We have a bijection of Sets:

{ 2D TOFT ouer} 5 E { Commutative Frobenius
o field Kk plgebros over k

=.0. Frobenius olgebros.
D). If G is a finite group. then kIG1 is symmetric Frobenius,

with trace form
&) = { - g-e

0 otherwise

2. Matn, k) is symmetric Frobenus with the usual trace form. Eg 0
in cose when KIGI is semisimple 18 just a product of this cse.

3. If M is a cosed compact k-orerted manifolol, then Poincaré
Cuolity tells us that
e= Ju : H™P(M) — Kk

gies & non-cegenerate troce on the cohomology nng H(MLIk). Tt's
super -commutative and thus it's a commutative Frobenius algebm
in the category of  Super- vector Spaces.

In porticular . the even part subalgebra H'(M. k) is a



commutntive  Frobenius algebra if M s reol euen dimensionol. For
instance, consioer CIP™ .
H*CP™ k)= H™(CP™, k)
= [kexa/ex™y
with the tmee form on the latier gen by:
8(’)(‘.)={ l [=n-l
0  otherwise

Unoriented 2d TQF T 'S

Let's now enlarge the category of Cobz by al [ouoz'ng unoriented
2- mang”olds 08 morphisms in the ategory. Agoin let F be ony
2d TGFT jffom this wnonented (b2 to the aategory of k-uector
spoces, and get A=F(QO).

As befor‘e. oll the oriented cobordism relations jBrce A tobe a
commutotive Frobenius olgebro/ k. But now, we have some extra
cobordism  generators and relations that put more conditions on
A.

We hove on extm. generator that exchanges the orientation of
S', constructed  from:

ﬁ These circles are (
u }gtued by a reflection

and for conuenience, we oepict it by:



F(X) = P:A—A

s an order 2 lk-linear map. We hove:

-9 ., §-0

soys that ¢ preserves the unit and trace . And

\VA O
A A The top “reverser” glioes
= O dovan to chorge  the
A z onentation on the bottom

implies ¢ is an olgebm homomorphism. Hence. ¢ is an inuolustion
Qf A as o commutative Frobenius algebra.

Next, the Mobius band . since it hos only ore boundory componentt,
an be regaroled 03 an unoriented  cobordlism fnom ® to S

@ denoted by @

Then it picks out a Special element k— A, 1+— 6.

Then:



The topological relation:
2N This is true sinee i we dose
4N - | o
B they all become IRP*s.
&/
=

implies that. vaeA , we have:
e(e-0) = 6a.

Similodly . the topological  relattion

@
_ ‘x They ore equal since
both are Klein bottles
with 2 punctures.

giues rise to the a(gebrw'c:
M(P ® Iga) ALY = B*.

Rmk: An extension Qf chagramaﬁcs.-
In the cbove dliscussion, we used the diagramatics of representing
the map A—A, a—6a by the picture :

- én

In gereral, we con extend this multiplioation by an element in A”



operation by locally "‘seuofng "a patch labeled by the element. For

instance .

These [ocal pictures con merge bﬁ associgtivity -

>

—
—

In this notation., ff we write Al = S 0@ bi, where {Qi} {bit
are dual basis gf A under €, then we have:

Ida =

dimA
= Z (=)

which. algebraically, just says that, v xeA.



x= M4 ciaix) bi
(We summorize this subsection in the J%l(ooofnﬁ-.

Thm. 3. Unonented 2d TQFT's over a field k are in bijection
with commuaoitive Frobenius algebras A with an involution @, a
distinguished element © st. VaeA . the following holds:

M. @oar) =0a

(. MP@Ida AW = 6%

=x. 0. Prove thm. # by checking that there are no ather congtmaints.

2). Find such A’s in representation theory of finite dimensional algebros .

Notice that if chark+2, @ decompeses A into two parts:
A=ATOA

st Qlar=Ida, @lg =-Ida. G€A"

Module theoretical chorocterization of  Frobenius algebras
We collect some basic module theoretical properties of finite dim'l
Frobenius - algebras , not necessarily commutative.
® A is Frobenus <= A=A" as left A-modules
& A=A as right A-modules
Pf: First of all A" is an (A.A)-bimodule, v a.b.C€A, fe AY,
(a-3*breer 2 frach.
Now £eA* Then YaeA . the map
A— A" . G — Q€&
s an isomorphism of (eft A-modlles : v abe A
ba—s E—ba)= b EC--a)=b.(Q-€)
To prove for right A modlules take a > g-a instead. Conuersely,



to recouer € from the module isomorphisms. just take the image
of 1€A in A" o

°* A is symmetric Frobenius & A = A* as (A.A)-bimodules.

Indeed, ﬁx a.be A, YCeA.
0.C-b — &cb-)=a €(Cc-b-—)

= 0 -&(--Cb)
= Q0 &--C)b
= Q- €(C- =)D O

o ProJ'ecﬁue modules ouer A coincide with injective A-modules .
Indeed. toking the uector space aupl mops projective modules to
injech‘ue modules . O

Compare with the cose gf Z . kixa, or even (ohtprojective uarieties ),
whose collection of projective objects and injective objects are vastly
different !

Thin surface TOFT's

How can one obtain non-commutative Frobenius algebras as TAFT's 7
One possible cobordism cotegory is the Jollowing cobordism  of
thin surfaces. The objects are closed intervals . and morphisms
thin surfoces with boundanies and comers -

Morphisms: U eup cunity (N 0op ccounit)



U coponts
(mulﬂp ication) (comultiplication)

subject to cobordism relations Like:

The brafdl‘n9 is given by:

/
/7

(1

Since the reds points on the night are connectedt by & cobordism

boundarg arc while the ones on the left are not However, if

we consider any TAFT from this Qtegory to lk vector Spoces,
we alwoys get gymmetric Frobenius algebras . This IS beaause -

Then we have:



There is o, diffeomorphism of
strips sending blue boundaries
- to blue boundones. red to
L/ red. and fixing the bottoms.

Note also that the braiding satisfies:

NG/

Jor the same reason as aboue.

Ex. An attempt for non-gymmetric coses.
If we wont 10 obtain non-gymmetnic ones, we Should differentiote

the above pictures. Notice that inside IR®, the pictures are
different if we take into account ¢f the winding number of
the boundary cround the central curve -

4



P
R S‘h;ght ” ‘mw‘
B2\

Rl ‘—'TW
ﬂ stroight '

Hence we may try to “unwind” the abowe situation, by
introolucing  the following untwistor”:

:

which might play the role of the Nakayoma automorphism
when applying a TAFT:

Recall the notion of the * Nakayama automorphism” of a
Frobenius olgebra . Let A be a Frobenius olgebra. and fix a€A.
Since € is non-degenerate. dlthough €a--) € A™ need rot be
the same as €@ €A*, it must be equal to & --0) for
Some. unique a:¢A. The Nekoyoma automorphism of A s then
the linear mop:

. A—A



a — a' .
e it's defined by the property that, v be A,
gca-b)y = Eb ).
It's easy to see that T is an algebra automorphism: Va.b.c €A,
E(c-zab)=€a-b-c)
= &(bc zw)
= ECC-T)-Tebn,
and € is non-cdegenerate. A is symmetric iff z=ida.

From this discussion, we see that the image of the ~untuistor
ribbon” under o TQFT should be the Nakayama automorphism.

F(§} = . A—A



