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81 Quivers, Dynkin  Diagrams  ond Positive  Roots
Let " be a finite oriented graph. ucI'y the set of uvertices in I'. and

eI’y the set of edges in T Let k be afimd ground field,

Def. The path algebrm. KII1 is the k-vector space with a basis
sponned by all the oriented poths in I (inclugting vertices s length
o paths), with the product structue given by concantenation of paths.

In the cbove exomple, T hos as a bosis the paths of:
length 0 ), @, 3y, 4, 5. (6

length 1= 1), (34), (54, (56), (32)

length 2: (134) . (132

with - products:
M- =0d), U =0, (AN =0., UNG4)=(034), BMU3HY=0, etC.

It J%([ows fnom dej‘.’ that kI’ iS asSociotive. It's finite oimensional iff
I" doesn't contoin any oriented  1- cycles.

The next two properties ore Cleor

(. (X)) = 8.)- ¢y, So that uertices ¢y, ieud™, ore idempotents,

@. 1=Sieur () is the unt of the algebm « it being the left / right
unit is equialent to Soying that any path in I storts/ends at some
vertex.

Thus KIT'J is awoys a unital associative algebra.



Examples
. let ' be:

I 2 3 n

It's eosy to check that kCl'1= {nxn upper triongular mottnces | a‘denﬁﬁdfng
the poth ¢.in-jy with the matmx Eij (i<j.

{ )

kI3 = kioa, the polynomiol rng on o,

2. The Jordan quiver:

x B

KIT1=lkeo >, the free k-algebra genenated by 2 words.

Recall that if G is a finte group, the group algebra CLG1 is Semisimple
so that any @GI-module is projective. Such rings, or eqw‘ua(enr(g their
aategory  of modules. are said to be of homological dlimension 0.

The next ase to lock at would then be those rings of homologial
dimension 1, i.e. those rings whose modules always admit a. 2-term
resolution by projective modules. Equiualently. this is equivalent to saying
that all submodules of projective mocules are themselves projective. This
last property is also Rnown as being hereditary.  Important examples arise
i number theory / commutative algebra, namely the nng of integers OF
of some number field F/ smooth affine curves over k.

Thm 1. KITT hos homological dimension 1.
Pf. We shall prove that, any KII"J-module admits a 2-ter projective



resolution. We fir\st show that the ring k(12 A itself odmits a 2-tem
projective A®«A - bimodlule resolution.

Since 1= Yieurs () and vy =8ichr. Air/ A are left/ right projective A-
modules , v ieuT». Thus we have a projective (A.A>- bimodue Ac @A

for each vertex e ud™. Consider
Dicorm Ay ®uihA — A

XY — i XilYi
where Xi/Yi stonds for a path that StrtS/ends at the uertex i

The mop is Cleorly sunjective, ond we clom that the kemel is given by the
projective  bimodule:
@wi—»_jee(l") Ach ®||<Cj)A — @ieucl") A(l') ®|k(i)A
2a Xi® Y; = Z X ®Y) - X @MY,

//\\' Gy
ACJ)@(J)A A(l)@(nA
ard in foct. we obtain the desmed bimodule neso(umn
0 — Duinjeer At Ok (HA % Dievm Ai®ik (ihA 25 A — 0
The injectiuity on the [.hs. and Ohedi=o0 is cleor. It suffices to check
that Rerdo € imd.
Let zekerdo. Note that it syffices to prove for z Consisting of paths
whose image under do le on a fixed path, soy d.in. ), ie.
do:2Z =3 gei Ok i RY®R-]) — ZOr(l—R=j)=0
We prove by induction on ﬂwe"lergth" |j-il. The length o aose is tuidl.
Consider
Z+ Qi @ (vl ) = S e Or(ir=RY® R, ]y + Qi 1) @ (i, J) = Qi @i+ )



= ZQJ'.-.HI O_lla(l',"-,h)@Ch,---,J')
= (i, 041) (Zg;im at'z(i+|,---,h)®ch,---,j))
Ll (. (+1) Clo( Za;im Ok it~ RY® R, ]))
=0 .
= Oot Skzim Qi tiv - RIOR.~.])) =0,
since (i) 8 o non-zero divisor on kein-jr. By induction
Euzim aﬁ(f+\."'.h)®(h,---.j)= iz
= 2=0 GO+ L AZ
= di (i ®G )+ (Li+)-Z),
ond this finishes the induction step.
Once this resolution is established, we obtain resdution of A-modules
Jor free. (e simply tensor it up with M:
0 — Dotis ey At @k Cj)M‘dl—’@ieucP)A(f)®lk ci>M—d—°>M — 0
the sequence remains exact since it (without the M term) Computes:
Torh (A M) = { M- =0
0 (+0.
Moreouer, the sequence gives rige for ony left A-module M o 2-step
projective  resolution. The theorem  follows. o

Quiver Representations
Oriented graphs are diso colled quivers, ond by & Quiver representation
we mean o module ouer the path agebra kII'1. In what follows we
shall study right kII'J-modules, so that the pictures ogree with the
orientation of T’ Switching to left modules just meons reversing all the
arrows in the pictures.
Let M be a ight) kII'l-module. Since 1= Tieud (0. we have
M= QieutyM-() (08 k-vector Spoaces).
Then o:i—j € &I gues nise to lineor mops:
M-ty —*— M)



M-y —— MEo= ML)
In this way. we Set up a 11 corespongence:
Collections of datum: k-uector
Spaces Mi L ieud™y ond linear
mops Mi'@’l\/hﬂ (i eed”.

{Quuer Representations} «—

M
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/ a  kICI-module

i

2

Ma

Before going on. we make some generl remarks about the Krull-Schmiott
property of Quiver representations.

let A be a ning and M an A-modue. M is soid to satigfy the
Krull- Schmidtt  property if
.M con be deromposed into a direct sum of  indecomposables :

Mo @ M
@. Upto to pemmutation, the decomposition iS  unique.

Its a vey general fact that any finte length A-module ¢ <=
moollles satigfying both the aseending chain condition and  the Oesending
chain condition) satigfies the Krull-Schmict property. Thus for any
k-algebra A the abelian category of finite dimensional A -modlles is
Krull- Schmidt.

Historically, Kummer ﬁ)[se(g ossumed  the Krull - Schmidt  property  for
Oc - modules , where F is a number field, and ~proved” Fermot's
lost theorem.

Thus to understond the category of quiver representation, we need
to first understond the collection of  indecomposables.

Examples :



(). Consider
o g

O

A representation of this quiver iS equivalent to an n-dimensioral vector
space together with 2 endomorphisms on it. Thus the isomonphism closses
of such representations are pammetrized by:
(Matcn,lkyx Maten.lky )/ GLain.lky,

which roughly has dimension n? Inside this set o genenc  isomorphism
closs is indecomposable . and the ctassiﬁoaﬁon Qf indecomposables  is
hard.

Such phenomenon occws for most quivers, and they are Said to be
of wild representation tupe.

(i. The Jordan Quiver
O

Assume that k=k. It's o classicol theorem of linear algebra that in this
case for eoch nzo. the set of indecomposobles of cdimension n s
parometrized by the Jordan canonicol ﬁ)r‘m qf O

[[55) | ree]

Thus in this ase. for‘ eoch ﬁxed dimension we hove o I-porameter
Jomily of indecompospbles . and is more tangible than the previous case.
Such quivers are said to be of tame representation type.

(iiy. Type A Quiver:

——>— o ——o > @---—---- ———>—=o

In this cose, one con check that the indecomposables are all of  the

Jorm:




Observe that in this case the indecomposables ore in  bijection with
the set of positive roots of the underlying Dynkin dliagram . i.e.
{&-g = oit-sofn . cti=Ei-€m}. In this cose, we soy that I" is
of finte representotion type , ond for this type of quivers, we have
the following:

Thm. 2. ki1 hos fmite representation type iff the underlying graph
of I' is ﬁnr’re Dynkin. Moreover . in this situation, the indecomposables
ore in bijection with the positive roots of the associated root system.

We shall gue o sketch of the proof. Before that we need to
introduce some  basic notions.

Def. Let M be a finite dimensional kII'J-module. The dimension
vector of M is defined to be:

. Slud

dimM £ ( dimMci)ieur € Zzo

The dimension uvector S Clearly additive on Rep(I), ond Serves the
usual purpose of  possing

dim: Rep(I”) — KolReptI™)
cor rather | Db(er(F)) — Kol Rep(I") = Psi: simple rep's ZLSiT).

Def. For each vertex ie ud, we defie the Skyscraper module S
to be the collection of olatum:

{Mi’:‘:”(, Mj=o0. j=i

oll mops between Mi, Mj are 0.



In cose I hos no oriented cydes, one ensly checks that the Simples
in Rep@ are exactly the SRyscroper modules Supported at ench
vertex e ud™. In particulor, Ko(Rep(I) = @ievn ZLSi] L‘fom’ﬂs a lottice
that is independent of the orentations on I", but only Oepends
on the underying goph of I, We put on the (atice the usual metnc
that S associated with any graph occuring in- Lie theory:

<tsi1,tsj1>é{ 2 =
~ #{lines connecting i andl j} (%
ossuming that I has no oriented cycles. (If T" does have oriented

cycles . we shoud look ot the category of nilpotent representations of
kII'I instead .)

Def. (Source and sink). A uertex teud™ is called a souce if al
the ormows comecting it point off of it . it's called a sk if
all the armows connecting it point inwands  insteod:

/k Q  Source /K O 8Nk

Sketch of progf of thm. 2.

From now on we ossume that all quivers inudued are smply-laced.

The main idea of the progf is to “Lift" the eyl group action on
the lotice Ko(Rep(I) to finctors octing on  Rep(I™). More precisely,
we sholl construct, for a source or sink i of T', onother quiver



I with the some underying graph, and functors 4. 47, eo that
they lift the reflection  Si: KolRep™ = Ko(Rep™ -

Rep(I™ <+ Rep(I™)

|am | an

KolRepT™ === KolRep(I™)

Then the theorem will follow from a clever use of some elementary
property of Coxeter groups.

Def. (Gobriel / Bemstein- Gelfand - Ponomareu  reflection functors )

m. Let i bea snk in a quuer T'. M a KII-modue. We define
(") to be the quiver obtained from I' be reversing all the amows
connected to i :

t i i
AN
r <4i"(T)

For any KII"I- module. we define a new KI<iI1- mooule ditM) a8
Jollowss -
Let v be the map @j-i Mg») 245 My, Define
men@s{@W-Ji
My | J*L
ond the maps to be the ones in M if the edges are digjcint fromi. and
to be the composite:
kery ©—s ()i M) =5 Mgy
if the edge comnects .

. Let { be a source in @ quver ', M a KII'T-module. e dgﬁne
U7(I") to be the quiver obtained from I' by reversing all the arows



connected to i :

T 4 ()

For ony KII"1- module. we define a new KI<i(I"1- module ditmy, as
follows: )
Let N be the map M o, (Bi—j M) Deﬁne
(o 2 [ I
Muy | J¥L
and the maps to be the ones in M if the edges are digjoint fmm [, and
to be the composite:
M) (B j~i M) — cokern

i the edge connects .

The fbﬂowmg lemma is an easy exercise.

Lemma. 3. (). Let i be a SinRk in ", M on indecomposable module
which 1§ not A Skyscraper module supported at . Then the map v
above is Surjective .
(2). Let i be a Source in I, M o0s in . Then the map n above is
injective.
. Let M be on indecomposable module as in (. Then the anonical
mops :

M —M —J M
ore isomorphisms . O

This lemma shows that the functors 7, 97 Lift the Weyl group actions of
S on dmenson vectors, of lenst for M indecomposoble and not a
skyscroper module. Indeed, if 1 is a Sk and M os in the lemma,



we haue:
0 — kery — ©j=iMj) — Moy — 0
=> dmIM = dimMa, -, dimkerv, - . dim M)
= (dimMay, =, 2 j-i dimMGy-dimMd. -, dimMeny)
= Si(dmM),
Here recall that :
Si(Z0j%)) =2 QjSieh)
= 2 Qj (0l = <olj. o >oxi)
= sl Qo + 2 j-i = QOG> O - Qi
= 2+ 0o +(Xj-i 07 - Qo (Simply-laced)
Simiodly, the resut holds for di" as well.

In what fo[(ows we shall assume T' hos its underlying graph finite
Dynkin.

Now from basic Lie theory, we know that for any root o>0 of a
semisimple Lie algebra., there exists a sequence of simple  reflections
Sik-ie-=8Si (o) >0
Sine Sigso-0 Silety<0
and moreover, Siwo°Si() = olix €A | If we oould ﬁmcforfallg L{ﬁ these
reflections Ji : Rep(I") — RepT’), this would give us:
Lirao o Fi (M) = Sig
the skyscroper module upported at e, Unfortunated, the reflection
Junctors I, I do not preserve I'. Instead. we shall use a dever
trick from Coxeter groups.

let T" be a finte Dynkin graph and lobel its vertices by fi.2.-.n}
orbitronily. Let RY be the associated inner product space (= Ko(ReptD)
®zR). ond W) be the Weyl group.



Dgf. A Coxeter eement ce W) is dqﬁned to be
C = Tlieur Si
in any order.
Any two Coxeter elements are conjugate by some element in OCR).

Prop.4. C has no fixed points in R ather than 0.
Pf. Let v be a fixed point of ¢. Since
SnlU)= U - <U. oln>oln,
Sn-1Sn(U) = Sna(U- €U, D >0ln)
= U = <U,0n>0ln = <U, B> On-1 + U, 0In > <Bin, o{p-1> Ol
ond further opplying Si.-. Sm2 only mod\:‘ﬁes SmiSa) by multiples gf X,
®na. THUS QWY=U => <V,00>=0.
Inductively. we have <v.o>=0, ¥i. Since {oit forms a bosis of IR”,
this proues that u=o. O

Props. ¥ o#u=Soici€R" has aizo for all i. then for some
meiN, CMU is no [onger positive.
Pf: Otherwise, c™u were positive for al meN. Since W) is a finite
goup. CM"=1 for Some heIN (the minimal such h is colled the Coxeter
number of W), Then we would have:

(1+C+-+ C™ewy >0

= 0 £ (I-0)Y(+C+- ") L) (by prop.4)

= (- My

= 0.
Contradiction . O

Now let T" be a quver whose underlying graph is finite Dynkin. It

tumns out that a Coeter element CeW) can be (iffed to a ﬁnctor‘
€: Rep”) — Rep()

In fact, since I' is a tree, I will always have a sink, Say in.



Delete in and all edges comnected to (n. The remaining graph is still a
tree (may be oliscomected) ond contoins another sink in-. Repeat the
process for i ond Reep going. Inductively. we will obtain o sequence
of sinks in-k for ingowe Jin(T). And finally in Jio- odfn(i)
Since every edge is reversed twice. we get back oo Jin(IM =

Def The functor obtained by composition:
CEdioodin: er [ — er(l
s colled the (oxeter functor.

Example:l 2 | 2
B \f/ \f/_f_, \f/

In this example
€=d'dsediods: Repll) — Rep(T').

Now the proof of the theorem is clear. Start with on  indecomposable
M. onol consider it's dimension uector dimM € Zso | By prop 5. ImeN
st. cM(dimMyyo but C™(@dimMy 20. Then 3 1¢k<n s

dim (Jiz =0 Jine €™ M) = Sia- SinC™ (diMM) 50
but



dim (J oo Fine €™ M) = Sin--SinC™ (diMM) 30
Since Jix >0 Jine€™'M i indecomposable (lemma 3.¢3)) , this SoYs
thot:

Jip oo Jine €™M = Sin-r € Rep( i oo i),
s the Skyscraper module supported at ir-1. Apply the inverses -

(€)™ Drno-o Jial Sina) =M
where € = dine--oJi . In porticulor,
dimM = ™% 8in - Sin (Clira) € WA

IS a positive root. This sets up the desired 1-1 correspondence
between positive roots and  indecomposable  KII™1- modules.

Example: For any finite Dynkin dliagom . we hove & maximal roat o,
which corresponos . under the comespondence of thm.2, to a lagest
indecomposable module M. Let's find this mocue jor Ee.

2
| 2 L | Es (B

Recall that the moximal o=>dkoi of @ Dynkin graph con be constructed

oS follouss -

ty. Adjoin | ext root to make the graph affine.

@), Label the vertices on the affine graph by dieIN subject to the

normalization conditions + 2 = 2j—idj , ond the added in root is

lobeled 1.

(3. Remove the extm root and o = 3 clioi is the desired moximal root:
The di's for Ee is depicted 0s obowe. Thus M looks like cin Some

o
[ ]



orentation q” Es):
lk2

T

e e ks ks [k

The maps involued are all surjections (otherwise one aan split Mw 8o that
it wont be indecomposable ), and the kemnels of the maps should be i
gerenic” position. By the GL@.k) action, we may assume that the kernel

of the 3 projections are the coordinate oxis .y, 2 resp.. Furthermore,
by the 3 copies of Gla.ky actions , we may reduce the projections into

the cononical ﬁrms:
T (369)

K k' K’
(699) (059
Upto this point, the obove diagram till carries k" x k™x K* automorphisms

coming jnm rescdling the Remnels. If we further require the two mops
k*—k to be anonical form  (1.0), we cut down the oautomorphisms

to only k* This shows that the module gf canonical fbrm " below is
the desired indecomposoble M :

T(gé?) M J%P Es

Exercise: Find M J%r DOn (n24) E3z Es.

Further remarks
m.In clossical Lie theory, a simple Lie algebm g with Dynkin diagrom



I" has a decomposition:
o= @ hon
and positive roots occur in the Olecomposition
N =D ues @oz
This story has much longer history than that of quiver nepresentation
(Lusztig, Ringel etc. 19%0's - 1980's)
Furthermore , classically, PBW theorem says that.

U & U = Doz Uy
where D=3 20, UTW) has a8 bosis Xu 2 o~ Ken with Tiact
=b. And Jor L, D'z0, we have-

Uy Ut € Uw+")
On the quiver representation Side. for each fixed dimension uector L=
>0k, We can consider the ™ moduli space” of KLI"1- modules  with
o fixed dlimension vector L -

{M| dmM=v}/iso
Upon choosing o bosis for each My, the isomorphism classes are
pagmetrized by the quotient space:

(Wu:i—-{j e e Hom(lka‘, k%)) / Tlieum GL@s, k).
By the Krull- Schmiat property, any finite dimensional module is a direct sum
of indecomposobles. thus the orbits are in biection with
(@ Mol Ma: indecornposoble with dimM = o, S bivti =D} .

Hence:

% ondits = dim U,
Lusztig pushed this futher by stuoying the topology of the ‘Mool
Spaces” (actually they are quotient Stacks) by looking at £-odic sheoves
on them. By doing S0 he was able to construct o. canonical basis of
U cor mther, its quantum deformations s> Satisfying amazing integral
and  positivity  properties  (Lusztig - Kashiwara. basis). Recently. Khouanou -
Louda found o combinatorial way of describing this bosis.



Example: Let's look ot ore example of the aboue cormespondence:

o— =0
&4 Ol2

For a fxed dimension vector Mot +nota . Hom (k™. k™ / GLem.lkyx GLan. k)
are parametrized by the set (W.L.0.G assume mz2n) :

(e[l O
Onr O /mwn

For each fixed v, the comesponding isomorphism class of  KLI'J -moolules is
the direct sum ?JC indecomposables :

k) 2 (e —® @ (k>0 P™ @ (0 s kP

o<r<n=mnimnt }

ond thus
# Hom (k™, k™ /GLim.kx GLn. k) = 1+ min{m.n}

which IS the same a8 dim U@y (mou+noi2) :

® e > AN +2002
o | dim%?"ﬂ(&)) (40012002 = Miné4,2)+1=3

. The following resutt is worth mentioning;

Thm. If a ﬁnife dimensional algebra. over an algebraically closed field
k hos finite repnesenfabon type and homalogical dlimension 1, then it's
Morita. equivalent to TS kI3, where T is an oriented Dgnknn dliagrom.

In this cnse. being Morita equivalent to TIZ K[ just means that
the clgebra. itself is isomorphic to TIi= Mat(ni, KITiDy . (i€ N), 80



that the representation category of the algebm is isomorphic to that
(gc T ke,

The representation Theory cf fnx‘te dimensional algebras /€ con be viewed
0s storting from Rep(@IG1) , where G is a finite group. The aategory
is Semisimple , and thus -
iy It's of homologiod dimension 0, ie. all modules are projective.
i Its of finite representation type.
If we stort to loosen any of the requirements, we obtain many more
objects -
i If we allow homological dimension 1, without finite representation type
requirements, we obtoin rings lke KII'] Jor any oriented groph T
iy I we only keep the finite representation type requirement but crop
the homdlogil dimension condiition, we hove nngs Re CIx1/x™.
Thm 1. Thm2 and the thm aboue Says that the rings that satisfy
both ¢y and i), we essentigly an only get path dgebros of A, D.
E type!

Problem: Find this analogue in number theory, i.e. find Similar conditions
as (v iy above for Or . and clossify these number fields F's.

iy Before ending the discussion. we mention some examples of  affine
and wild type quivers.

Example: For affine graphs. we have the ossociated Ko - Moody algebras
and now the root system consists of real roots and imaginary  roofs.
For positive real roofs ¢ red meaning (.0)=2 in the associated (orton
formy, the story is similar as for finite Dynkn aase , and we have a
unique indecomposable  KII™1-module. However, for each imaginary root.



we have @ I-parameter family of  indecomposables. We illustrate this
phenomenon  with the example qf Kronecker quiver, whose associated
Koe-Moody algebra. is 4lc2) -

e—3—»
0(\ 0(2
2 -2

The Corton form is guen by (272). The positive real roots are
{not+ oz Nzot U {ntnsn+ neva IN20}
and the associated indecomposables are

P + + <
q:n : <].:n | d.:n [ z,z d:n
where
pl = (18"”) . Pz= (I?\xn) G-= (In O) . Zz= (O,In)
r‘eSDGCfer(S .

The positive imoginary roots  are:
N8 = { now+noca [ n21 ]
(8 is the null root ou+oz ). For each nx. we have & famflg,pammeTNzed

by AeC. of indecomposables:
1d

Jdn.a
where Jna is the Jordon matrix (A'!-"l\) S )eC.

n

C

n

C

Exercise: For Da | fnd Q j?zmilg Qf indecomopogobles ﬁr nd . nzi,

(A)he@ 8= Olo + Ol + 20{2 + X3 + Ol4

™o s
>°<
o Ola

Beyond the affine case. the problem becomes really diffieutt. For instonce,



Gelfand showed that the problem of clossifying modules over T
Da with one extra vertex adjoined to the central vertex i8 in Some
sense equally s Oifficutt 08 thar for Du with any number of extra
vertices adjoined !

-
r e

Gelford's result says that Jor any fixed dimension
vector v of T, the moduli space” of  k[[™1-
modules con be embedded in that of I of
Some large enough dimension vector . And
vice versq,!



§2. Applications on Spectrol - Sequences

The goal Qf this section is 1 urdenstond, ﬁom a repregentation theoretic
point of uiew, why the differentials dr appear natumly in the spectml
sequences of  double complexes ouer a fied Ik.

(Co ) Homology ‘f complexes

From  representation  theoretic point of uiew. @ complex (V°. dy ouer k-
d d

IR Y - T - B I B
is nothing but a grade mooule ouer the graded ring kidi/cd? . where
degd=1. Note that kLd1/c = H%S k.
Groded indecomposable modules cver krd/cd® ore easy to CBSSfY.
They are:
m. S —0—0—k —0—0—
where the only non-trviel term Sits in homological dlegree i, i€ Z. These
ore exactly all the Simples,
2. P —0—0—k Lk—0—
where the fust non-triviol tem k- sits in degree i . ieZ. They are all
Jree modues and thus projective. Actually they are injectives as well. ccf
the proof of the dassfication result below.
It's rendily seen that any groed module V' is just a direct sum of
these  indecomposables  «Krull - Schmidt) -
V'z @iezS' @ P
and toking (corhomology just picks out the simples:
HY V") = DiezS"

Bicomplexes and  spectral - Sequences
A bicomplex V**/k consists of a latfice qf vector spaces V', Lj€Z
equipped with olgﬂ%renﬁa(s di chorizontaly, da cuertioaly Satigfging:
d|2=0=dz2 . Alda+0kdi=0



IM: sz {da
g\ rin i\ /0, \ P,

le Tda sz

A\ gy L,
rd> 1da Ada
langricla, o, o la,
'}\dz 'll‘dz ’Irdz

There are several cohomologies we @n toke:
w). Horizontal homology: H (V™ d)
@. Verticol cohomology : H(V™", da)
@. Totol cohomdogy : This s where we collapse the bigrading into a
singe one and toke cohomology H*(Tet"(V™"). D). where
{TOTR(V.'.) £ Bij=r V"
D= ditdz - otA (V") — Tot™(V™)

A spectral sequence of the double complex V™" says that we
aon qdlculote the total cohomology (at leost as vector spaces) via the
Following - procedure:

. Toke the wvertical cohomology H™(V™*, )& E". Note that o
still acts o8 a oiffrential on it horizontally -

Fin_ldi Se | Q, h-\.jﬂ_g’

"'—Q’E _-)EI EI

N N P

ol R, iR, £, ..




@. Toke the cohomolegy of H™(E™ . di)2Ex"". and a new differential
0z :

~. _d

\%* lj*" N
= Ea 4 2~ _da
\ i=,1 R e I \
By | B UEN g,

\g “J' it ~ ga
E2 ~ E2 ~ E2 ~ dz

~d | —~.
™~

@, Inductiely, fom the cohomology complex H™(ER, dv) 2 EX*, and
equip it with a differential dr - EFl — B

L );
i, j-p
Er

r+l

. Possing to Ex", Ouj <Ed wil be isomorphic to HR(Tot*(V™"). D) as
k-vector spaces. (More precisely, there is a fllimation on HR(Tot *(V™"), D)
whose associated graded module 75 isomorphic to Dexjer o ).

Remark that we may equaly stort with toking horizomtal cohomology s
= page. We just r@"lect all pages Ea Es.~ and Ew about (=] oxs.

The main goal here i8 to uncerstand why toking cohomologies of all
dr's IS necessary.
As with complexes. we Start by reinterpreting any deuble complex as a



bigraded module ouer the bigraded nng KL, d21/¢02, 03 , chdatc0hy 2 Aa

where O hos degree (L0Y, and 0: hos oégree (0.1, Note that /\y =
H*(S'xS' k).

Thm 1. (Classification of indecomposable modules ouer Aa)

Let V™" be a bicomplex , bounded in some finite region of Z2, but
might be infinite dimensional in each fixed degree \/J. Then it decomposes
into o direct sum of  indecomposables , which are classified as - follows:

0
Simples . S 0 —s u(“'j_}_, 0
(lje &) T
0]
_ ke — Ik
Frees: P T'I -(—|>T
tije Z) fijh k= K

And the following zig-zog types, ijeZ. 4eiN and £ denotes the number
of orrows in the oliagram :

{1j} Ik fijtk —— Ik
] ]
k —L Ik k—1— [k
.([ ;,\

K — s [k k —— Ik

2 j |

3 lk



The proof’ of the thm. will be defered. But now let's ook at its
implications . e compare . for each type of  indecomposable aboue,
its contribution to the cohomology groups:

@. H" (-, 0h)

by. H (-, D)
Recoll that @ omouts to J%rger about the horizortal arrows in these
modules and Compute its uertical Cohomology , while (b Collapses the

bugradmg into a s:rg(e one ond toke Cohomo(ogg For instance . J%r‘
D4,

k & Ik O @ O
k —>k @ K o czhaE:o?o:ag | |
T'I -(-|)T ipk @ K ipo & O

Gk < K \
(b

We tobulate these resuts as follows -

D
lkikz—D*k—D—*o c——’zﬁa( 0—0—0 —0 0
T ;ﬁ j:z e Y i+ hjﬂ i+_j+2

g' pH Zih 4o
0—o :
H™ (- o) leii.jh I °=7
0o — o0 °—o
o 5
H' (-, D) le{ixj} o 0




Zih 2 even 24y 4: ewen 25y 4:0ad
k —o
. o fritk —o i
H™ (-, 0 |o—o I . (L_o
vt | L
- 0 [l -y
H* (-, D) lk fi+} lk fij} O

From this companison we conclude that the only discrepancy comes about
when foking - cohomologies of Z%e. ¢:odd. Then these differences are

Rilled Oﬁ bg dr's in Er:

TN
:E Or \ H' (- dn 0

N

3

{i+p, j-rai}
Hence step by sfep. a Spectral sequence remoues all the discrepancies
coused from Z3e . f:odd, and retuns with on accunate account of

the Size qf H(Tot(\V"™"), D).

Example: Hodge to de Rhom spectral Sequence.

let X be a Closed almost complex monifold and J the ossocioted
amost complex Structure J*=-1 on TrX. Upon choosing a. compatible
metric, we may equip the cotangent bundle TRX with the same
complex Structure acting 6s an isometnic endomorphism of TRX.

Then:
TEX = TRX ®-C = TO(X) @ T*'(X)



decomposes into (- eigen spaces of J, ond o does the associated
Oe Rham complex :
(XY, d) =(@p.q QPYX) . d)
where QFX) = T7OX, AR TeX) and QP4(x) = (X, AP THUXI® A TO (X))
are the spaces of smooth sections. The famous thm. of Newlanoer
and Nirenberger Stafes that J is a complex Sfructure |
d: QPxy — OP"4x) @ QP¥x) .
(C.f. Huybrechts, Complex geometry. on introgluction , 32.6). If this
hoppens, d=9+3, where:
{QP'Q(xu <5 P4
QPAx) 2 "X
ond the condition d*=0 <
3*=0, 3*=0, 33+3d3=0,
Thus to any complex mamfo(o\, there 18 the associated Hodge to de Rham
spectral sequence:
P HEOP*x), 3) = HP((O¥X.0), d),
Now if we assume furthemore that X is Kahler, we hove the:

Lemma (The 33-lemma) Let X be a compact Kihler manifold. Then
for a d-closed fom o of type .oy, the following ore equivalent
. o0 is d-exact

i), & I8 o-exoct

i, & 1S 9-exoct

V. o 18 39-exoct, ie o=338 Jor some B of type p-.a-),
(C.f. Hugbredwts, Complex geometry, on introguction , (or. 3.2.10) .

In our context. |f o belongs to Some  indecomposable summand of
the €[d.9]1-module @p.qQP4X), then « onses as



N
i
o

Checking our (ist of indecomposables. this could only happen for modules
of tye SY and PY Thus we condude that
B pa OPUX) = Bi5((S4)°™ p(P)")
and the spectrol sequence degenerates ot E1 . This estoblishes the well-
known Hodge Olecomposition  theorem J‘Br Kahler manifoldis:
HRX,C) = Dprg=t H(YL™.3).

Clossifieation of indecomposables  over /2.
In this part we shall prove thm. I
Let V" be a bigmded moole over 2. We first show that . if’ ve
\/‘J is a homogeneous uector , and did:u+0 (S0 that ckdiu#0 as
. then v gererates o copy of PY ond we can split it off

ﬁ‘om \/
Vo= P gy

That v generates o copy of P s neaddg seen , so that it's
0. projective module ¢ free). To show that it's actually @ direct
summand, we shall show that PY is injective 08 well To do this
it's worthwhile to be slightly more  general :

lemma 2. Let A be o Frobenius algebma/k (ie. a finite dimensional.
unital, associative algebra. equipped with @ bilinear . non-degenenate,
painng £: AGkA — k st ewb.cy=gwa.be),va.b.ceA). Thenos
o module ouer itself, the Jree module A is dlso injective.

Example: Frobenius - algebms .



. Mnlk): the matnix algebro. - with EA.B) £ TNAB) , vA.BEMn(k.
. KIGT : the group algebro of @ ﬁniie group G . with € given by:
eqe (' &
0 Q=i
. H¥M.k): cohomalogy rings of  compact, k-onientoble manifolds .
where € is guen by , Va.beHM.ky:
£(a,b) 2 Jon aub
andl M1 denotes . chosen k- fundamental closs. The non-degeneracy
of € is gunnnteed by Poinaré cbidlity.
The rings we are considering are of  this type:
H* S, k) = ktdi/d?
H*SxS k) = Na= lkcdi.d21/(d?, d3 ., dida+0l20)
Pf of lemma 2.
For any Jinite dimensional k-dgebma A, A= Hom(A. k) becomes an
A module” f we defe: vfe A*, fiontfixa) If A is adso
Frobenius.
g A A
a —s &-,0)% &
s an isomorphism of  A- modules - it's a map of A-modules Since
va.b, xe A.
Ea-b (X)= EX.0D) = E(XQ.b) =(Q-Ep(xy ,
and it's on isomorphism Since € is nondegenerate. It follows that
A I8 injective Since
Homa (=, A) = Homa(-, A"
= Homu(A®y(-) ., k)
is & composition of exact functors 8o that it's exact. The last step
Pollows from the general tensor-hom adjunction: if A is a B-agebra,
then. for any A-modue M and B-module N,
Homg (A®M, N1= Homa (M, Homg(A.N)) O



It fol(ouos that we can Split @‘f ol vectors v with cadiv=o. Thus

we may assume that v veV™, dhdiu=o0 . Agin. if we set
D=di+0h,

we con ootan o decomposition, V L. j€ Z:
) VY 2 (ker DY @ Comp™ )
where Comp™ s on arbitrary vector space complement to tkerD)",

Under our assumption . the module V**
| |
o \/f,J'H \/i*l,‘jﬂ _

I

Cee— \/l'.’ _ \/iﬂ'j —_
i |

Oecomposes  0s:

(l(erD "o Comp'/™ (l<erD "® Com
(KerD)') @ Comp') (KerD)" @ Comp™

=

.e. it's Oecomposed into }J‘g-zag" types (¢ the red part):

s (kerDy " e— Comp™ — (kerD)" " «— Gomp™ —>+

Modules of this type are no other thon modlules over the type A
path dlgebros we introduced in - the previous  section



------- *<o <o A quiver

Moreover, bounded modules of  this quier . ie. modules cuer Some
An for n»o, are direct sums of indlecomposables ceuen infinite glimen-
sional onesy, which were da,ssg‘?ed to be in bijection with the positive

roos of An. and of the ﬁrm-.
. N

Q> 0 —<— k—>— [k ----- - k—>— k —<—0—>—0 -~

These ove precisely the “zig-z0g" and Simples desaribed in thm 1. ond
we are done.

Finally, we remark that if we are consiolering unboungled bi-
complexes, we obtain 3 more types of  unbounded modlules . comin
0S8 module ouver Aw' , which ore unbounded on both ends , or bounded
on one end:

“Aw’ Quiver
_______ Ik ———lk 0 —>—Ik
L t i
k—>~ I K—3—Ik k—S"
/lt|—>'— k /lt;L K t‘!‘w— Ik
1\-1 1\" N N
k—L Ik Ik—l>l— [3 k—>- "f
(1) (I + ()

Note that if a bicomplex contains some of these infinite length
modules, the spectral sequences Constructed from it need not converge.
Let's look af, for instonce, the unbounded cose (I):
Oﬂ the E poge - . |
EY=H(\ da) =0



d L

k—3" I 0
A H(-. dha) |
k—>L - o 0
b |
T

k—>- K
|

However, the D cohomology 18 non-zero:
= 0 — Diyj=r k i’@:\-j:l\u k—0—>--
D is injective. but InD consists of (Qij)i=r with
> c—nJag =0,
which is of codimension | in @is=mk , and thus
* o0 lk %X=0

H (Tettviy. DY = { o otherwise

ond these discreponcies couldn't be compensated throughout  Er.
Similorly, the Ei poge of Vi :

k=3t Kk o
iy Ay £i.41
t sl H'(=.0a) L o
|
)
k—5- ik o o0

This copy of k is never Rilled in the Spectml sequence. and wil
contribute & Copy of k to degree r=itj .f we collopse the bfgmdfng.
But the D oohomology is again k in r+ !

Problem + Try to work out what we did for filtereol complexes.



