Homework 1

January 23, 2022

Exercise 1. Use the following way to show that the fundamental group of a Lie group is abelian.
(1) Recall that an element $[\gamma]$ of $\pi_{1}(G)$ is represented by a path γ starting at the origin of G. If given such two paths γ_{1}, γ_{2}, show that there is a well-defined map from the two torus $T^{2} \longrightarrow G$, such that when restriced to $S^{1} \times 1$ and $1 \times S^{1}$ you get back γ_{1} and γ_{2}.
(2) By part (1), the subgroup generated by $\left[\gamma_{1}\right]$ and $\left[\gamma_{2}\right]$ is contained in the image of $\pi_{1}\left(T^{2}\right)$ under the above extended map. Use this to finish the proof of $\pi_{1}(G)$ being abelian.

Exercise 2. Find the foundamental groups of the following Lie groups $O(n, \mathbb{R}), U(n), S U(n)$ and $S p(n)$. Here $S p(n)$ is defined as the group that preserves the standard inner product on the n-dimensional quaternionic space \mathbb{H}^{n} :

$$
S p(n):=\left\{A \in \mathrm{M}(n, \mathbb{H}) \mid\langle A v, A w\rangle=\langle v, w\rangle \forall v, w \in \mathbb{H}^{n}\right\} .
$$

Exercise 3. Let A, B be any matrix in $\mathrm{M}(n, \mathbb{F})$ with $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}. Prove the following identities.

- $\exp \left(B A B^{-1}\right)=B \exp (A) B^{-1}$ if B is invertible.
- $\exp \left(A^{*}\right)=(\exp (A))^{*}$, where $*$ can either be the transpose, conjugation (on \mathbb{C} and \mathbb{H}) or the composition of these two operations.
- $\exp : \mathrm{M}(n, \mathbb{F}) \longrightarrow \mathrm{M}(n, \mathbb{F})$ is real analytic, and the differential $\left.d(\exp)\right|_{0}$ is nondegenerate at $T_{0}(\mathrm{M}(n, \mathbb{F})) \longrightarrow T_{\mathrm{Id}}(\mathrm{M}(n, \mathbb{F}))$.
- $\operatorname{det}(\exp (A))=e^{\operatorname{tr}(A)}$.
- Use these properties to find the tangent space $T_{\mathrm{Id}} G$ for the following matrix groups:

$$
G=G L(n, \mathbb{F}), \quad S O(n, \mathbb{R}), \quad U(n), \quad S U(n), \quad S p(n)
$$

and compute their dimensions over \mathbb{R}.
Exercise 4. Show that \mathbb{R}^{3} with the usual cross product is a Lie algebra.
Exercise 5. Recall from Exercise 2 that $S p(1)$ consists of unit quaternions. Show that $S p(1) \cong$ $S U(2)$ by explicitly constructing an isomorphism.

Exercise 6. Let U be a charted open set of a manifold M, and let ξ be two vector fields on M whose restriction on U are given by

$$
\left.\xi\right|_{U}=\sum_{i=1}^{n} a_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}},\left.\quad \eta\right|_{U}=\sum_{i=1}^{n} b_{i}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{i}} .
$$

Show that, if we define the commutator vector field $[\xi, \eta]$ locally by

$$
\left.[\xi, \eta]\right|_{U}:=\sum_{i, j=1}^{n}\left(a_{j} \frac{\partial b_{i}}{\partial x_{j}}-b_{j} \frac{\partial a_{i}}{\partial x_{j}}\right) \frac{\partial}{\partial x_{i}},
$$

then $[\xi, \eta]$ is a well-defined global vector field (i.e. it is independent of choices of the chart U).

Exercise 7. Let A be a finite-dimensional algebra over \mathbb{R}, and let D be a derivation on A. Then

$$
\exp (D): A \longrightarrow A, \quad a \mapsto \sum_{k=0}^{\infty} \frac{D^{n}(a)}{n!}
$$

is an algebra automorphism of A.
Exercise 8. Let A be an associative algebra.
(i) Show that there is a Lie algebra homomorphism $A^{L} \longrightarrow \operatorname{Der}(A)$ given by $a \mapsto[a,-]$. Such derivations on A are called inner derivation.
(ii) If $A=\mathbb{k}[x]$, the polynomial ring in a single variable, find all derivations on A. Are any of them inner derivations?

Exercise 9. Any (matrix) Lie group $G(\subset G L(V))$ acts on its Lie algebra $\mathfrak{g}=T_{1} G$ by congugation:

$$
G \times \mathfrak{g} \longrightarrow \mathfrak{g}, \quad(g, x) \mapsto g x g^{-1}
$$

(1) Show that this action preserves the Lie bracket.
(2) In the case of $S U(2)$, show that this action preserves the metric on $\mathfrak{s u}(2)$ defined by $\langle A, B\rangle=\operatorname{Tr}\left(A B^{*}\right)$.
(3) Show that there is a well-defined group homomorphism $S U(2) \longrightarrow S O(3)$ using (2). What is the kernel of this map?

