Homework 1

January 23, 2022

Exercise 1. Use the following way to show that the fundamental group of a Lie group is abelian.

- (1) Recall that an element [γ] of π₁(G) is represented by a path γ starting at the origin of G. If given such two paths γ₁, γ₂, show that there is a well-defined map from the two torus T² → G, such that when restriced to S¹ × 1 and 1 × S¹ you get back γ₁ and γ₂.
- (2) By part (1), the subgroup generated by $[\gamma_1]$ and $[\gamma_2]$ is contained in the image of $\pi_1(T^2)$ under the above extended map. Use this to finish the proof of $\pi_1(G)$ being abelian.

Exercise 2. Find the foundamental groups of the following Lie groups $O(n, \mathbb{R})$, U(n), SU(n) and Sp(n). Here Sp(n) is defined as the group that preserves the standard inner product on the *n*-dimensional quaternionic space \mathbb{H}^n :

$$Sp(n) := \{ A \in \mathcal{M}(n, \mathbb{H}) | \langle Av, Aw \rangle = \langle v, w \rangle \, \forall v, w \in \mathbb{H}^n \}.$$

Exercise 3. Let A, B be any matrix in $M(n, \mathbb{F})$ with $\mathbb{F} = \mathbb{R}, \mathbb{C}$ or \mathbb{H} . Prove the following identities.

- $\exp(BAB^{-1}) = B\exp(A)B^{-1}$ if B is invertible.
- exp(A*) = (exp(A))*, where * can either be the transpose, conjugation (on C and H) or the composition of these two operations.
- exp : $M(n, \mathbb{F}) \longrightarrow M(n, \mathbb{F})$ is real analytic, and the differential $d(\exp)|_0$ is nondegenerate at $T_0(M(n, \mathbb{F})) \longrightarrow T_{Id}(M(n, \mathbb{F}))$.
- $\det(\exp(A)) = e^{\operatorname{tr}(A)}$.
- Use these properties to find the tangent space $T_{Id}G$ for the following matrix groups:

$$G = GL(n, \mathbb{F}), \quad SO(n, \mathbb{R}), \quad U(n), \quad SU(n), \quad Sp(n),$$

and compute their dimensions over \mathbb{R} .

Exercise 4. Show that \mathbb{R}^3 with the usual cross product is a Lie algebra.

Exercise 5. Recall from Exercise 2 that Sp(1) consists of unit quaternions. Show that $Sp(1) \cong SU(2)$ by explicitly constructing an isomorphism.

Exercise 6. Let *U* be a charted open set of a manifold *M*, and let $\xi \eta$ be two vector fields on *M* whose restriction on *U* are given by

$$\xi|_U = \sum_{i=1}^n a_i(x_1, \dots, x_n) \frac{\partial}{\partial x_i}, \quad \eta|_U = \sum_{i=1}^n b_i(x_1, \dots, x_n) \frac{\partial}{\partial x_i}.$$

Show that, if we define the commutator vector field $[\xi, \eta]$ locally by

$$[\xi,\eta]|_U := \sum_{i,j=1}^n (a_j \frac{\partial b_i}{\partial x_j} - b_j \frac{\partial a_i}{\partial x_j}) \frac{\partial}{\partial x_i},$$

then $[\xi, \eta]$ is a well-defined global vector field (i.e. it is independent of choices of the chart *U*).

Exercise 7. Let *A* be a finite-dimensional algebra over \mathbb{R} , and let *D* be a derivation on *A*. Then

$$\exp(D): A \longrightarrow A, \quad a \mapsto \sum_{k=0}^{\infty} \frac{D^n(a)}{n!}$$

is an algebra automorphism of A.

Exercise 8. Let *A* be an associative algebra.

- (i) Show that there is a Lie algebra homomorphism $A^L \longrightarrow Der(A)$ given by $a \mapsto [a, -]$. Such derivations on A are called *inner derivation*.
- (ii) If $A = \Bbbk[x]$, the polynomial ring in a single variable, find all derivations on A. Are any of them inner derivations?

Exercise 9. Any (matrix) Lie group $G(\subset GL(V))$ acts on its Lie algebra $\mathfrak{g} = T_1G$ by congugation:

$$G \times \mathfrak{g} \longrightarrow \mathfrak{g}, \qquad (g, x) \mapsto g x g^{-1}$$

- (1) Show that this action preserves the Lie bracket.
- (2) In the case of SU(2), show that this action preserves the metric on $\mathfrak{su}(2)$ defined by $\langle A, B \rangle = \text{Tr}(AB^*)$.
- (3) Show that there is a well-defined group homomorphism $SU(2) \longrightarrow SO(3)$ using (2). What is the kernel of this map?