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Abstract

Hopfological Algebra

You Qi

We develop some basic homological theory of hopfological algebra as defined by Khovanov

[17]. A simplicial bar resolution for an arbitrary hopfological module is constructed, and

some derived analogue of Morita theory is established. We also discuss about some special

classes of examples that appear naturally in categorification.
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Chapter 1

Introduction

Since its birth, homological algebra has commonly been regarded as being centered around

the equation d2 = 0. Such a view can be best seen through the famous quote of Henri

Cartan:

If I could only understand the beautiful consequence following from the con-

cise proposition d2 = 0.

-Henri Cartan.1

Thus it is a natural question to ask whether and how one could deform this equation

while maintaining an equally beautiful and useful theory. Indeed, in [23, 24], Mayer defined

a “new simplicial homology” theory over a field of characteristic p > 0 by forgetting the

usual alternating signs in the definition of boundary maps. The boundary maps satisfy

∂p = 0, and associated with this kind of “p-chain complex” one obtains the “p-cohomology

groups” Ker(∂q)/Im(∂p−q), for any 1 ≤ q ≤ p − 1. Furthermore, when applied to singular

chains on topological spaces, this construction results in a “new homology theory” which is

a topological invariant of the underlying space! Exciting as it might seem, however, Spanier

[36] soon found out that these homology groups can be recovered from the usual singular

homology groups, due to the restrictions placed on any topological homology theory by the

1See the foreword of [9].
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Eilenberg-Steenrod axioms. This immediately extinguished most of the interest in Mayer’s

invariant, and people paid little attention to these pioneering works on p-complexes; they

remained buried among historical documents until several decades later. In 1996, Kapranov

[11], and independently Sarkaria [32], studied a “quantum” analogue of the equation dp = 0,

working over a field of characteristic zero with n-th roots of unity (e.g. the n-th cyclotomic

field Q[ζn]). The analogous construction yields n-complexes whose boundary maps satisfy

dn = 0 for some n ∈ N. Similar homology groups of these complexes as in [23, 24] are

defined. This construction, as a purely algebraic object, rekindled more interest this time

and found applications in theoretic physics. Nowadays there is a vast collection of literature

on the subject. See, for instance, Angel-Dı́az [1], Bichon [2], Cibils-Solotar-Wisbauer [5],

Dubois-Violette [7], Sitarz [35], Kassel-Wambst [13], and many of the references therein. It

is worth mentioning that [13] put both dp = 0 and dn = 0 on equal footing, and developed

some general homological theory for both cases.

Meanwhile, Pareigis [29] reinterpreted the usual homological algebra over a base ring K

as (co)modules over a non-commutative, non-cocommutative Hopf algebra. In fact, using

Majid’s “bosonisation process” [25], one can understand this Hopf algebra as a graded Hopf

algebra object K[d]/(d2) in the category of graded super-modules over the ground ring K.

Similar reformulations for the deformations dn = 0 were given by Bichon [2]. One crucial

feature of such Hopf algebras used by these authors is that their (co)module categories

are Frobenius. Indeed, finite-dimensional Hopf algebras or objects bearing enough similar

properties are well known to have a left (co)integral, which in turn can be used to define

non-degenerate associative bilinear forms on the algebras. See for instance [20] for an arrow-

diagrammatic proof of this result.

To this end, the work of Khovanov [17] can be regarded as a general framework to unify

both points of view about the homological algebra of dn = 0. There he considers (co)module

algebras over any finite-dimensional Hopf algebra (or a finite-dimensional Hopf-algebra object

in some category). In this framework, Mayer’s original p-complexes can be identified with
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(co)modules over the Z-graded finite-dimensional Hopf algebra k[∂]/(∂p), where k is a field

of characteristic p > 0. Moreover the usual notion of a differential graded algebra (DGA)

can be reinterpreted as a module algebra over the graded Hopf super algebra K[d]/(d2), and

therefore affords a generalization to arbitrary module algebras over finite-dimensional Hopf

algebras, among which the Hopf algebra k[∂p]/(∂p) over a field of characteristic p > 0 is the

simplest example. Nonetheless, one question dating back to Mayer-Spanier should still be

addressed: why should we care about this construction if its homology gives us nothing new?

One answer to this question was given by Khovanov in [17]. Instead of homology, the

Grothendieck groups K0 of the triangulated (stable) categories H−gmod are isomorphic

to the p-th (equivalently the 2p-th) cyclotomic integers Z[ζ]/(1 + ζ + · · · + ζp−1) ∼= Z[ζp].

Furthermore, the (triangulated) module category over such a Hopf-module algebra inherits

a (triangulated) module category structure. Therefore the Grothendieck group of such a

module category will be a module over the ring of cyclotomic integers. Finding interesting

such module algebras could potentially realize the dreams dating back to Crane-Frenkel on

categorification of quantum three-manifold invariants at certain roots of unity, and extend

these invariants into four-dimensional topological quantum field theories [6]. With this moti-

vation, Khovanov coined the terminology “hopfological algebra” since this new framework is

a mixture of homological algebra and the theory of Hopf algebras. We follow his suggestion

and use this term vaguely to refer to the general homological theory of Hopf-module algebras

and their module categories.

In the present work, we develop some general homological properties of hopfological

algebra (or following [17], we should say “hopfological properties”) in analogy with the usual

homological theory of DG algebras. The strategy is rather straightforward since there are

now beautiful structural expositions on DG algebras to mimic, such as the book by Bernstein

and Lunts [4, Section 10], the less formal and very readable online lecture notes by Kaledin

[12], or the papers of Keller [14, 15]. We will mainly follow Keller’s approach in [14].

Now we give a rough summary of the content of this paper. We start by briefly reviewing
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Khovanov’s original constructions in the first three chapters and giving ways to construct

distinguished triangles in the “homotopy” and “derived” categories of hopfological modules,

in analogy with DG algebras. Then we analyze more closely the morphism spaces in the

homotopy category, which is needed to define the notion of cofibrant hopfological modules.

As in the DG case, we show that any hopfological module has a cofibrant replacement

(Theorem 6.6), and the morphism spaces between cofibrant objects in the derived category

coincide with their morphism spaces in the homotopy category. Such cofibrant replacements

are also needed to define derived functors and to construct derived equivalences of different

hopfological module categories. Next, we show that the derived categories of hopfological

modules are compactly generated, and this allows us to use the formidable machinery of

Ravenel-Neeman [31, 27, 28] to give a characterization of compact objects in the derived

category (Corollary 7.15), as well as to make precise the definition of Grothendieck groups of

hopfological module categories. Finally, a restrictive version of Morita equivalence between

derived categories is given (Corollary 8.18). Throughout, the general theory is illustrated

by three specific examples in parallel comparison, namely the usual DG algebra, Kapranov-

Sarkaria’s n-DG algebra, and Mayer’s p-DG algebra.

As this thesis will mainly serve as a tool kit for our work on categorification at roots of

unity [19, 8, 30], there are some important caveats we have to make clear. The first remark to

make is that we do not attempt to develop hopfological theory for Kapranov’s characteristic

zero “n-differential graded algebra” in full generality. In Chapter 8, we need to assume that

the underlying Hopf algebra be (co)commutative. One reason is that, given a left H-module

algebra A, we could not find a natural way to define a left H-module algebra structure on

Aop for arbitrary H. Another problem is that, given two module algebras equipped with

n-differentials (i.e., d(ab) = d(a)b + ζdeg(a)ad(b), and dn = 0 for any elements a, b ∈ A),

there does not seem to be a natural way to define a module algebra structure on the tensor

product algebra. This problem was already pointed out in [35]. Such a monoidal structure

plays a very important role in many existing examples of categorification, for instance [18].
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Secondly, we will not develop in this paper the full analogue of DG Morita theory (as in

Keller [14]), as we wish to control the length of the paper. Such a theory might be better

treated in a more categorical setting than the one we use here. In subsequent works we will

investigate this question in parallel with Toën’s framework [38] on DG categories, as well as

more related K-theoretical questions.
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Chapter 2

Module categories

In this and the next two chapters we review the basic constructions of hopfological algebra,

following [17, Sections 2.1-2.3]. Then we will develop some basic properties of hopfological

algebra, adapting the framework for DG-categories (algebras) in [14]. Our goal is to show

that, as predicted in [17], a fair amount of the general theory of DG-algebra generalizes to

hopfological algebra.

2.1 The base category

Let H be a finite dimensional Hopf algebra over a field k. We denote by ∆ the comultipli-

cation, by ε the counit, and by S the antipode of H. It is well known that S is an invertible

algebra anti-automorphism. We will fix a non-zero left integral Λ of H once and for all,

which is uniquely determined (see, for instance, Corollary 3.5 of [20, Section 3]), up to a

non-zero constant in the ground field k by the property that, for any h ∈ H,

hΛ = ε(h)Λ. (2.1)

The category H−mod of left H-modules is monoidal, with H acting on the tensor product

M ⊗ N of two H-modules M and N via the comultiplication ∆. In what follows, we will



7

constantly use the Sweedler notation: for any h ∈ H, ∆(h) =
∑

(h) h(1)⊗ h(2) ∈ H ⊗H, and

we will omit the summation symbol if no confusion can arise. Moreover, we will freely use

the fact that, for any h ∈ H, h(2)S
−1(h(1)) = ε(h) = S−1(h(2))h(1), which follows by applying

the anti-automorphism S−1 to the axiom h(1)S(h(2)) = ε(h) = S(h(1))h(2).

By convention, when a tensor product sign ⊗ is undecorated, we always mean that it

is over the base field k. Moreover, when tensor products “⊗” and direct sums “⊕” appear

together without brackets, tensor products always take precedence over direct sums. By

modules over an algebra we will always mean left modules over the algebra unless otherwise

stated.

Proposition 2.1. 1. For any H-module M , we have a canonical isomorphism of H-

modules M ⊗H ∼= M0⊗H, where M0 denotes M as a k-vector space equipped with the

trivial H-module structure.

2. The algebra H is Frobenius, so that it is self-injective. The associated stable module

category H−mod is triangulated monoidal.

3. The shift functor T on H−mod is given as follows: for any H-module M , let M ⊂ I

be the inclusion of M into the injective H-module I = M ⊗ H, given by IdM ⊗ Λ :

M −→M ⊗H. Then T (M) is defined to be the cokernel of this inclusion:

T : H−mod −→ H−mod, M 7→M ⊗ (H/kΛ).

4. The tensor product of H-modules descends to an exact bifunctor on H−mod

⊗ : H−mod×H−mod −→ H−mod,

which is compatible with the shift functor above. H−mod is symmetric monoidal if H
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is cocommutative. Here compatibility means that, for any M, N ∈ H−mod,

T (M)⊗N ∼= T (M ⊗N) ∼= M ⊗ T (N).

Proof. We give the proof of part 1 here. The rest of the statements are proved in [17,

Section 1]. We define a map of H-modules: fM : M ⊗H −→ M0 ⊗H by sending m⊗ l 7→

S−1(l(1))m ⊗ l(2), for any l ∈ H, m ∈ M . Then we check that it is an H-module map: for

any h ∈ H,

fM(h(m⊗ l)) = fM(h(1)m⊗ h(2)l) = S−1((h(2)l)(1))h(1)m⊗ (h(2)l)(2)

= S−1(l(1))S
−1(h(2))h(1)m⊗ h(3)l(2) = S−1(l(1))ε(h(1))m⊗ h(2)l(2)

= S−1(l(1))m⊗ hl(2) = hfM(m⊗ l),

where we used that S−1(h(2))h(1) = ε(h) and h(1)ε(h(2)) = h. Notice that in the second to

the last equality, h only acts on the second factor. Finally, fM is invertible whose two sided

inverse is given by f−1
M : M0⊗H −→M⊗H, m⊗h 7→ h(1)m⊗h(2). We leave this verification

to the reader.

We briefly remind the reader of the notion of a stable category associated with a Frobenius

category (e.g. modules over a Frobenius algebra), and this will explain some of the notations

we used in the above proposition. For more details, see [10, Section 2, Chapter 1]. An

abelian category C (e.g. H−mod) is called Frobenius if it has enough injectives and enough

projectives, and moreover the class of injectives coincides with that of the projectives. If C

is such a category, we denote by C the stable category associated with it, whose objects are

the same as that of C, and the morphism space between any two objects X, Y ∈ Ob(C) are

constructed as the quotient

HomC(X, Y ) := HomC(X, Y )/I(X, Y ), (2.2)
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where I(X, Y ) stands for the space of morphisms between X and Y in C that factor through

an injective (equivalently projective) object in C. Theorem 2.6 of [10, Section 1.2] shows

that C is triangulated. The translation endo-functor of T : C −→ C is given as follows. For

any X ∈ Ob(C), choose a monomorphism λX : X −→ I(X) of X into an injective object

I(X). We define T (X) := I(X)/Im(λX), considered as an object of C. It can be checked

that the isomorphism class of T (X) in C is independent of choices of I(X), and this leads to

a well-defined functor on C. Happel also shows that T is an automorphism of C (Proposition

2.2 of [10, Section 1.2]), and it is readily checked that its inverse is given as follows: for

any X ∈ Ob(C), take an epimorphism from a projective object µX : P (X) −→ X, then

T−1(X) := ker(µX), regarded as an object in C. Finally, every short exact sequence of

objects in C descends to a distinguished triangle in C, and conversely any distinguished

triangle in C is isomorphic to one that arises in this way (Lemma 2.7 [10, Section 1.2]).

Example 2.2. We give some simple examples of finite-dimensional (graded, super) Hopf

algebras and their left integrals.

• Let G be a finite group and H = kG be its group ring over a field k. Then H is a

Hopf algebra with ∆(g) = g⊗ g, S(g) = g−1 and ε(g) = 1, for any g ∈ G. The element∑
g∈G g spans the space of (left and right) integrals.

• Let V be an (n+ 1)-dimensional vector space over a field k, and let H = Λ∗V be the

exterior algebra over V . Then H becomes a graded Hopf super-algebra if we define

any non-zero element v ∈ V to be of degree one; ∆(v) = v ⊗ 1 + 1 ⊗ v; S(v) = −v;

ε(v) = 0. The space spanned by a non-zero (left and right) integral can be canonically

identified with Λn+1(V ) ∼= kv0 ∧ · · · ∧ vn, where {v0, · · · , vn} forms a basis of V .

• Let k be a field of positive characteristic p. LetH = k[∂]/(∂p), with ∆(∂) = ∂⊗1+1⊗∂,

S(∂) = −∂, and ε(∂) = 0. H will be graded if we fix a degree for ∂. The space of (left

and right) integrals in H is spanned by ∂p−1.
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• Let Hn be the Taft algebra (see [2] or [17, Section 4]) over the n-th cyclotomic field

k = Q[ζ], where ζ is a primitive n-th root of unity. As a k-algebra, Hn is generated by

K,K−1 and d, subject to the relations K−1K = KK−1 = 1, Kn = 1, Kd = ζdK, and

dn = 0. Hn is an n2-dimensional Hopf algebra with ∆(K) = K ⊗K, ∆(d) = d ⊗ 1 +

K⊗d, S(K) = K−1, S(d) = −K−1d, ε(K) = 1, ε(d) = 0. It is easily checked using the

commutator relations that a non-zero left integral is given by Λl = 1
n
(
∑n−1

i=0 K
i)dn−1,

while a non-zero right integral is given by Λr = 1
n
dn−1(

∑n−1
i=0 K

i).

The following lemma is a slight generalization of Proposition 2 of [17, Section 1], which

will be needed for technical reasons later.

Lemma 2.3. Let M be an arbitrary H-module and N be a projective H-module. Then M⊗k

N , Homk(M,N) and Homk(N,M) are projective as H-modules. The H-module structures

are defined in the usual way: for any h ∈ H, m ∈M , n ∈ N , f ∈ Homk(M,N),

h · (m⊗ n) :=
∑

h(1) ·m⊗ h(2) · n,

(h · f)(m) :=
∑

h(2) · f(S−1(h(1)) ·m).

Proof. The case when either one of M or N is finite-dimensional follows from Proposition

2 of [17]. When both M and N are infinite-dimensional, we can write M as a union of its

finite-dimensional submodules M = ∪i∈IMi where I is some filtered partially ordered set,

with i ≤ j in I if and only if Mi ⊂ Mj. In other words, we regard I as a small filtered

category in which there is an arrow i −→ j if and only if Mi ⊂ Mj, and then M is the

colimit of I. We also write N as a direct sum of finite-dimensional injective and projective

modules N = ⊕j∈JPj. Now the tensor product is injective since we can write it as

M ⊗N ∼= M ⊗ (
⊕
j∈J

Pj) ∼=
⊕
j∈J

M ⊗ Pj.



11

which is a direct sum of injectives1, where each term M ⊗Pj is injective by Proposition 2 of

[17].

Next, Homk(N,M) can be rewritten as

Homk(
⊕
j∈J

Pj,M) ∼=
∏
j∈J

Homk(Pj,M) ∼=
∏
j∈J

P ∗j ⊗M.

Each P ∗j is injective since Pj is also finite-dimensional projective, and we are again reduced

to the case of Proposition 2 of [17].

Finally, for Homk(M,N), we use the short exact sequence of vector spaces

0 −→
⊕

(i−→j)∈I

Mi
Ψ−→
⊕
k∈I

Mk −→M −→ 0, (2.3)

where the first direct sum is over all arrows in I, the second direct sum is over all objects of

I, and Ψ restricted on each summand Mi labeled by i −→ j is given by composing

Mi −→Mi ⊕Mj; mi 7→ (mi,−mi)

with the natural inclusion map

Mi ⊕Mj ↪→
⊕
i∈I

Mi.

Applying Homk(−, N) to this exact sequence, we get a short exact sequence of H-modules:

0 −→ Homk(M,N) −→
∏
k∈I

Homk(Mk, N)
Ψ∗−→

∏
(i−→j)∈I

Homk(Mi, N) −→ 0.

Notice that

∏
k∈I

Homk(Mk, N) ∼=
∏
k∈I

(
⊕
j∈J

Homk(Mi, Pj)) ∼=
∏
i∈I

(
⊕
j∈J

Pj ⊗M∗
i ),

1Any product of injectives over a ring is injective; an infinite direct sum of injectives is injective if and
only if the ring is noetherian [21, Theorem 3.46].
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so that it is injective once again by the finite-dimensional case [17, Proposition 2]. Likewise

for the last term in the short exact sequence. It follows that the above sequence of H-modules

splits, and Homk(M,N) is injective.

2.2 Comodule algebras and stable module categories

Now we recall the notion of a (right) comodule algebra over H. We slightly modify the

convention used in [17] to better suit the special case of DG algebras over the base field k.

In particular we will be mainly using the notion of right H-comodule algebras as opposed to

left comodule algebras. The proofs of [17] go through almost unchanged with appropriate

“left” notions switched to the “right” ones.

Definition 2.4. A right H-comodule algebra B is a unital, associative k-algebra equipped

with a map

∆B : B −→ B ⊗H

making B into a right H-comodule and such that ∆B is a map of algebras. Equivalently, we

have the following identities:

(IdB ⊗ ε)∆B = IdB, (IdB ⊗∆)∆B = (∆B ⊗ IdH)∆B,

∆B(1) = 1⊗ 1, ∆B(ab) = ∆B(a)∆B(b).

Here B ⊗H is equipped with the product algebra structure.

Let V be an H-module, and M be a B-module. The tensor product M ⊗ V is naturally

a B-module, via ∆B. The tensor product gives rise to a bifunctor

B−mod×H−mod −→ B−mod (2.4)

compatible with the monoidal structure of H−mod, and in turn this makes B−mod into a
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(right) module category over H−mod.

Definition 2.5. Let BH−mod be the quotient category of B−mod by the ideal of morphisms

that factor through a B-module of the form N ⊗H, where N is some B-module.

More precisely, we call a morphism of B-modules f : M1 −→M2 null-homotopic if there

exists a B-module N such that f factors as

M1 −→ N ⊗H −→M2. (2.5)

The space of null-homotopic morphisms forms an ideal in B−mod. The quotient category

BH−mod by this ideal by definition has the same objects as B−mod, while the k-vector space

of morphisms in BH−mod between any two objects M1, M2 is the quotient of HomB(M1,M2)

by the subspace of null-homotopic morphisms.

We also recall the following useful lemma, which gives an alternative characterization of

the ideal of null-homotopic homomorphism.

Lemma 2.6. A map f : M −→ N of B-modules is null-homotopic if and only if it factors

through the map M
IdM⊗Λ−−−−→M ⊗H.

Proof. This is Lemma 1 of [17, Section 1].

As a matter of notation, we will denote the canonical B-module map in the lemma by

λM : M
IdM⊗Λ−−−−→ M ⊗H for any B-module M , as such maps will appear repeatedly in what

follows.

Proposition 2.7. The category BH−mod is a (right) module category over H−mod.

Proof. The tensor product B−mod×H−mod −→ B−mod descends to a bifunctor

BH−mod×H−mod −→ BH−mod,

compatible with the monoidal structure of H−mod.
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We will be mainly interested in the following class of examples. See example (g) of [17,

Section 1], or [26, Chapter 4].

Example 2.8 (The main example). Let A be a left H-module algebra. This means that A

is a left H-module, and the multiplication and unit maps of A are left H-module maps. An

excellent treatise for these algebras is [26], which gives a detailed survey of recent research

on such module algebras and their ring theoretical properties.

Definition. The smash-product algebra B = A#H is the k-vector space A ⊗ H with the

multiplication:

(a⊗ h)(b⊗ l) =
∑
(h)

a(h(1) · b)⊗ h(2)l.

Here “·” denotes the left H action of h(1) on b.

The algebra B has the structure of a right H-module algebra by setting

∆B : B −→ B ⊗H, ∆B(a⊗ h) := a⊗∆(h)

for any a ⊗ h ∈ B. We will loosely refer to the class of modules over this kind of smash

product ring B as hopfological modules.

As special cases of this main example, we have:

1. If A = k with the trivial module structure over H, then A = k#H = H. We recover

the usual stable category of H, that is, BH−mod = H−mod.

2. Slightly more generally, let A be any k-algebra with the trivial H−module structure.

Then B = A ⊗ H. We will see later that the usual notion of chain complexes of

modules over the algebra B, or their “n-complex” analogs [11, 7], are examples of this

particular case. We will deal with a more specific class of examples of this kind in the

last chapter.
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Chapter 3

Triangular structure

Now let us recall the shift functor, the cone construction, and the triangles in BH−mod.

See [17, Section 1]. We refer the reader to [9, Chapter IV] and [10, Chapter I] for more

information about triangulated categories.

3.1 The shift functor

The shift (or translation) functor T on BH−mod is the functor that BH−mod inherits from

T of H−mod, where we regard BH−mod as a module category over H−mod (see Proposition

2.7 above). More precisely, we define:

Definition 3.1. For any left B-module M , let T (M) be

T (M) := M ⊗ (H/(kΛ)).

This defines a functor on B−mod and it descends to be the shift endo-functor on BH−mod.

The above definition is justified thanks to the following.

Proposition 3.2. T is an invertible functor on BH−mod, whose inverse T−1 is given by

T−1(M) := M ⊗ ker(ε).
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Proof. Omitted. This is Proposition 3 of [17, Section 1].

3.2 Distinguished triangles

For any B-module morphism u : X −→ Y denote by u its residue class in the stable category

BH−mod (this and the following u notation etc. are taken from [10]).

Definition 3.3. The cone Cu is defined as the pushout of u and λX in B−mod, so that it

fits into the following Cartesian diagram

X u //

λX
��

Y

v
��

X ⊗H u // Cu.

(3.1)

Now, let u : X −→ Y be a morphism of B-modules. We denote by λX the quotient

map from X ⊗H to TX, so that there is the following diagram of short exact sequences in

B−mod:

0 //

��

X
λX //

u
��

X ⊗H λX //

u
��

TX // 0

��

0 // Y
v // Cu

w // TX // 0.

(3.2)

Definition 3.4. A standard distinguished triangle in BH−mod is defined to be the sextuple

X
u
// Y

v
// Cu

w
// TX

associated with some morphism u of B-modules. A sextuple X
u
// Y

v
// Z

w
// TX in

BH−mod of objects and morphisms in BH−mod is called a distinguished triangle if it is

isomorphic in BH−mod to a standard distinguished triangle.

Theorem 3.5. The category BH−mod is triangulated, with the shift functor T and the class

of distinguished triangles defined as above.

Proof. Omitted. This is Theorem 1 of [17, Section 1].
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3.3 Triangulated module category

Recall that an additive functor F : C −→ D between triangulated categories is called exact

if it commutes with the respective shift functors and takes distinguished triangles to distin-

guished triangles. The lemma below implies that, if V is an H-module, then tensoring a

distinguished triangle X // Y // Z // TX with V gives a distinguished triangle in

BH−mod:

X ⊗ V // Y ⊗ V // Z ⊗ V // T (X ⊗ V ) , (3.3)

so that tensoring with any H-module V is an exact functor on BH−mod. We say informally

that BH−mod is a “triangulated (right) module category” over H−mod.

Lemma 3.6. There exists a functorial-in-V isomorphism of H-modules

r : H ⊗ V −→ V ⊗H

intertwining the H-module inclusions Λ⊗ IdV : V −→ H ⊗ V , and IdV ⊗ Λ : V −→ V ⊗H.

Proof. Omitted. See Lemma 2 of [17, Section 1]. We take r to be the inverse of the functorial

intertwiner in the lemma there.

Remark 3.7 (Graded versions). Before proceeding to other hopfological constructions,

we remark here that all of our constructions above apply without much change to finite-

dimensional graded Hopf algebras, finite-dimensional graded Hopf super-algebras, or more

generally, any finite-dimensional Hopf-algebra object in a symmetric monoidal category

which admits integrals (see [20, Section 3] where a diagrammatic construction of integrals

in these cases are exhibited). A good example to keep in mind is when H = k[d]/(d2) is the

Z−graded Hopf super algebra where deg(d) = 1. As we will see, a Z-graded algebra A being

an H-module algebra means that A is a differential graded (DG) algebra over the field k,

as defined in [4, Section 10]. The categories A#H−mod, C(A,H), and D(A,H) correspond

respectively to the abelian category of DG modules over A, the homotopy category of DG
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modules over A, and the derived category of DG modules over A, with the latter two being

triangulated. The morphism spaces in these cases are slightly different: as we will see later,

the morphism spaces are given by the usual RHom of complexes in C(A,H) and D(A,H),

at least between “nice” complexes. See the first example of [17, Section 2] for more details.

3.4 Examples

We now describe the objects of BH−mod more explicitly for some particular smash product

algebras B = A#H (see the main example 2.8). By regarding the usual notion of DG

modules over a DG algebra as a special example, we will see that examples of this kind are

naturally generalizations of the DG case.

• Let H = k[d]/(d2) be the graded Hopf super-algebra over k, where deg(d) = 1. For a

graded k-algebra A to carry an H-module structure, it is equivalent to have a degree-

one differential d : A −→ A satisfying the following conditions: for any a, b ∈ A,

d(ab) = d(a)b+ (−1)|a|ad(b), d2(a) = 0, (3.4)

i.e., A is a DG algebra over k. Notice that d(1) = 0 follows automatically from the

first equation. A (left) A#H-module M is an A-module equipped with a compatible

H-action. Since H is generated by d, it suffices to specify the d-action on M and

require it to be compatible with the A-module structure on M as well as the d-action

on A. This amounts to saying that, for any a ∈ A, m ∈M , we have

d(am) = d(a)m+ (−1)|a|ad(m), d2(m) = 0, (3.5)

i.e., M is a (left) DG module over the DG algebra A. We refer the reader to [4, Section

10] for details about the homological properties of DG modules.

• Let H = Hn be the Taft algebra over Q[ζ] (see 2.2), and let A be an Hn-module
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algebra. Since K generate a subalgebra of Hn isomorphic to the group algebra of

Z/nZ, A must be Z/nZ-graded and the multiplication on A must respect this grading.

For any homogeneous element a ∈ A of degree |a|, K acts on a by K · a = ζ |a|a.

Next, the relation Kd = ζdK applied to a gives us Kd(a) = ζ |a|+1d(a), i.e. d(a) is

homogeneous of degree |a| + 1. Equivalently, d has to increase the degree by one.

Furthermore, the comultiplication equation ∆(d) = d⊗1+K⊗d, when applied to any

product of homogeneous elements a1, a2 ∈ A, imposes the differential condition that

d(a1a2) = d(a1)a2 + ζ |a1|a1d(a2). Finally dn = 0 just says that dn(a) = 0 for all a ∈ A.

Thus we conclude that an Hn-module algebra is just a Z/nZ-graded algebra equipped

with a degree-one differential such that

d(a1a2) = d(a1)a2 + ζ |a1|a1d(a2), dn(a) = 0. (3.6)

Following [2, 7, 11, 13], we say that A is an n-differential graded (n-DG) algebra over

Q[ζ]. Notice that A could have a Z-grading since any such grading collapses into

a Z/nZ-grading. Similar as in the DG case, an A#Hn-module is equivalent to a

Z/nZ-graded A-module, equipped with a degree-one differential d, such that for any

homogeneous a ∈ A, m ∈M ,

d(am) = d(a)m+ ζ |a|ad(m), dn(m) = 0. (3.7)

Likewise, we will call such a module an n-DG module.

• Let k be a field of positive characteristic p, and H = k[∂]/(∂p). This case is entirely

analogous to the above n-DG algebra case, and we just state the results. An H-module

algebra A comes with differential ∂ such that for all a, a1, a2 ∈ A,

∂(a1a2) = ∂(a1)a2 + a1∂(a2), ∂p(a) = 0. (3.8)
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Notice the lack of coefficients before a1 on the right hand side of the first equation.

Similarly, an A#H-module M is an A-module equipped with a differential ∂ on it

compatible with the A-module differential, i.e., for all a ∈ A, m ∈M ,

∂(am) = ∂(a)m+ a∂(m) ∂p(m) = 0. (3.9)

We can also require some compatible grading on ∂, A and M , but the formulas remain

unchanged. We leave the details to the reader.

Algebras and modules of this kind will be referred to as p-DG algebras and p-DG

modules.
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Chapter 4

Derived categories

From now on, we will focus on the case of the main example 2.8 above, where derived

categories can be defined.

4.1 Quasi-isomorphisms

Suppose B = A#H is the smash product of H and a left H-module algebra A. Since

H ∼= k⊗H is a subalgebra of B, we have the restriction functor from B−mod to H−mod,

Res : B−mod −→ H−mod. (4.1)

This descends to an exact functor on the quotient categories

Res : BH−mod −→ H−mod. (4.2)

In what follows, we will introduce a new notation for the triangulated category BH−mod

for the special case of the main example 2.8:

C(A,H) := BH−mod. (4.3)
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The notation stands informally for “the category of chain complexes of A-modules up to

homotopy”. The reason for using this term will be clear once we understand the Hom

spaces better, and realize the category C(A,H) as an analogue of the homotopy category of

DG-modules in the next chapter.

Definition 4.1. (i). We define the total cohomology functor to be the restriction functor,

Res : C(A,H)−mod −→ H−mod.

(ii). A morphism f : M −→ N in C(A,H) is a called a quasi-isomorphism if its restriction

Res(f) is an isomorphism in H−mod.

(iii). A B-module M is called acyclic if 0 −→M is a quasi-isomorphism.

Theorem 4.2. 1. Quasi-isomorphisms in C(A,H) constitute a localizing class.

2. The localization of C(A,H) with respect to the quasi-isomorphisms, denoted D(A,H),

is triangulated. Tensoring with any H−module (on the right) is an exact functor in

D(A,H).

We will call D(A,H) the derived category of B−mod.

Proof. Omitted. See Proposition 4 and Corollary 2 of [17, Section 1].

4.2 Constructing distinguished triangles

Now we describe how short exact sequences in the abelian category B−mod lead to distin-

guished triangles in C(A,H) and D(A,H). We start with the construction in C(A,H).

Lemma 4.3. Let

0 −→ X
u−→ Y

v−→ Z −→ 0
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be a short exact sequence in B−mod, which is split exact as a sequence of A−modules. Then

associated to it there is a distinguished triangle in C(A,H):

X
u−→ Y

v−→ Z −→ TX

(the connecting homomorphism on the third arrow is described in the proof below). Con-

versely, any distinguished triangle in C(A,H) is isomorphic to one that arises in this way.

Proof. The converse part holds by construction, since λX : X −→ X ⊗H is always a split

injection of A-modules.

Now, according to the Definition (3.4), the map u : X −→ Y gives rise to a commutative

diagram in B−mod:

0

��

0

��

0 // X
λX //

u
��

X ⊗H //

u
��

TX // 0

0 // Y //

v
��

Cu //

v
��

TX // 0

Z

��

Z

��

0 0 .

(4.4)

Therefore the cone Cu fits into a short exact sequence of B-modules:

0 −→ X ⊗H u−→ Cu
v−→ Z −→ 0,

which is split exact as a sequence of A-modules. Thus, we will be done with the first half of

the lemma once we establish it in the following special case: in the short exact sequence as

above, v becomes an isomorphism in C(A,H). The connecting homomorphism is then taken

to be the composition of the inverse of v and Cu −→ TX.
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To prove the last claim, consider the cone of v, which fits into the commutative diagram.

0 //

��

X ⊗H u // Cu
v //

λCu
��

Z //

��

0

��

0 // X ⊗H u′ // Cu ⊗H v′ // Cv // 0

(4.5)

By assumption, the top short exact sequence splits in A−mod, and so does the bottom one

since the third square in (4.5) is a pushout. We will show that Cv ∼= 0 in C(A,H), and the

special case will follow since, by construction,

Cu
v−→ Z −→ Cv −→ T (Cu)

is a distinguished triangle in C(A,H).

Now we examine the B-module structure of Cu ⊗ H. By tensoring the top short exact

sequence with H in the above diagram (4.5), we obtain the exact sequence

0 −→ X ⊗H ⊗H −→ Cu ⊗H −→ Z ⊗H −→ 0,

which is A-split. By commutativity of the second square in (4.5), u′ : X ⊗ H −→ Cu ⊗ H

factors through

u′ : X ⊗H λX⊗H−−−→ X ⊗H ⊗H −→ Cu ⊗H.

Now notice that the map H −→ H ⊗H which sends h 7→ h ⊗ Λ is an H-module injection,

whose quotient H⊗ (H/kΛ) ∼= H(dim(H)−1) is an injective and free summand in H⊗H which

we write as H ′. This is true since H is self-injective (see Lemma 1 of [17] for an explicit

splitting). Modding out the submodule X ⊗H ⊗ Λ in Cu ⊗H, which is no other than Cv,

we get a short exact sequence of B-modules.

0 −→ X ⊗H ′ α−→ Cv
β−→ Z ⊗H −→ 0,
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which is also A-split. The next lemma then shows that

Cv ∼= X ⊗H ′ ⊕ Z ⊗H,

and the result follows.

Lemma 4.4. Let β : C −→ Z⊗H be a surjective map of B-modules which admits a section

in A−mod. Then Z ⊗H is a direct summand of C in B−mod.

Proof. Let γ′ : Z⊗H −→ C be a section of β as a map of A-modules, so that β ◦γ′ = IdZ⊗H .

Define

γ : Z ⊗H −→ C, z ⊗ h 7→ h(2)γ(S−1(h(1))z ⊗ 1).

Then we claim that γ is a section of β in B−mod.

To prove the claim, we first show that γ is A-linear. For any a ∈ A and z ⊗ h ∈ Z ⊗H,

we have

γ(az ⊗ h) = h(2)γ
′(S−1(h(1))(az)⊗ 1) = h(3)γ

′((S−1(h(2))a)(S−1(h(1))z)⊗ 1)

= h(3)((S
−1(h(2))a)γ′((S−1(h(1))c)⊗ 1))

= h(3)(S
−1(h(2))a)h(4)(γ

′(S−1(h(1))z ⊗ 1))

= (ε(h(2))a)h(3)(γ
′(S−1(h(1))z ⊗ 1)) = ah(2)γ

′(S−1(h(1))z ⊗ 1) = aγ(c⊗ h),

with the third equality holding because γ′ is A-linear.

Then we show that it is H-linear as well. If l ∈ H, z ⊗ h ∈ Z ⊗H, then

γ(l(z ⊗ h)) = γ(l(1)z ⊗ l(2)h) = l(3)h(2)γ
′(S−1(l(2)h(1))(l(1)z)⊗ 1)

= l(3)h(2)γ
′(S−1(h(1))S

−1(l(2))l(1)z ⊗ 1) = l(2)h(2)γ
′(S−1(h(1))ε(l(1))z ⊗ 1)

= lh(2)γ
′(S−1(h(1))z ⊗ 1) = lγ(z ⊗ h).
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Finally, we show that γ is a B-module section of β. Taking z ⊗ h ∈ Z ⊗H, we have

β(γ(z ⊗ h)) = β(h(2)γ
′(S−1(h(1))z ⊗ 1)) = h(2)βγ

′(S−1(h(1))z ⊗ 1) = h(2)(S
−1(h(1))z ⊗ 1)

= h(2)S
−1(h(1))z ⊗ h(3) = ε(h(1))z ⊗ h(2) = z ⊗ h,

where in the third equality, we have used that β is H-linear. The claim follows.

Following Happel [10, Section 2.7], we describe the class of distinguished triangles in the

derived category D(A,H).

After localization, any short exact sequence of B-modules, not necessarily A-split, will

lead to a distinguished triangle in D(A,H), as below. Let

0 // X
u // Y

v // Z // 0 (4.6)

be a short exact sequence of B-modules. Then, similarly to the proof of Lemma 4.3, there

is a distinguished triangle in C(A,H),

X −→ Y −→ Cu −→ T (X), (4.7)

coming from the diagram (4.4), and Cu fits into a short exact sequence of B-modules

0 −→ X ⊗H −→ Cu −→ Z −→ 0. (4.8)

Proposition 2.1 shows that X⊗H, as an H-module, is projective and injective. It follows that

v : Cu −→ Z is a quasi-isomorphism which is invertible in the derived category. Therefore

we obtain a distinguished triangle

X
u−→ Y

v−→ Z
w−→ T (X), (4.9)

where w is taken to be the composition of (v)−1 by Cu −→ TX.
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Lemma 4.5. In the same notation as in the above discussion, given any short exact sequence

of B-modules 0 −→ X −→ Y −→ Z −→ 0,

X
u
// Y

v
// Z

w
// T (X)

is a distinguished triangle in D(A,H). Conversely, any distinguished triangle in D(A,H) is

isomorphic to one that arises in this way. �

Remark 4.6. An alternative proof of Lemma 4.5 can be obtained by combining Lemma 4.3

with the “bar-resolution” (6.6) of Chapter 6. In particular it will tell us that all distinguished

triangles in D(A,H) are isomorphic to the ones arising as the image of a split short exact

sequence of A-modules.

4.3 Examples

As an immediate application of the above construction, we calculate the Grothendieck groups

(K0) of the stable categories H−mod (H−gmod) where H is among the examples we gave

in 2.2. Note that in our notation, H−mod ∼= C(k, H) ∼= D(k, H). Recall that K0(H−

mod) (K0(H−gmod)) is the abelian group generated by the symbols [X]’s, where [X]’s

are isomorphism classes of finite-dimensional objects in H−mod (H−gmod), modulo the

relations [Y ] = [X] + [Z] whenever X −→ Y −→ Z −→ T (X) is a distinguished triangle in

H−mod (H−gmod). More general discussion about the Grothendieck groups of D(A,H)

will be given in Chapter 7.

As a matter of notation, for any graded module X over some graded ring, we will denote

by X{r} the same underlying module but with its grading shifted up by r.

• Let H be the exterior algebra Λ∗V on an (n + 1)-dimensional vector space V over

k, where we set non-zero elements of V to be of degree one. Then H is a graded

Hopf super-algebra and we will calculate K0(H−gmod). Since H is local with the
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maximal ideal Λ>0V , there is only one simple H-module k0 := (Λ∗V )/(Λ>0V ) up to a

grading shift. Therefore K0(H−gmod) is generated as a Z[q, q−1] module by [k0], where

q[k0] := [k0{1}]. Again since H is local and thus indecomposable as a left module over

itself, the only relation imposed on [k0] comes from H being the iterated extension of

the shifted simple module k0:

0 ⊂ Λn+1V ⊂ · · · ⊂ Λ≥kV ⊂ Λ≥k−1V ⊂ · · · ⊂ Λ≥0V = H, (4.10)

where Λ≥kV/Λ≥k+1V ∼= (k0{k})⊕(n+1
k ). Hence using Lemma 4.3 inductively, we get

0 = [H] =
n+1∑
k=0

(
n+ 1

k

)
qk[k0] = (1 + q)n+1[k0].

Therefore it follows that

K0(H−gmod) ∼= Z[q]/((1 + q)n+1). (4.11)

This ring is isomorphic to the cohomology ring of the projective space P(V ), and this

is no coincidence. In fact there is an equivalence of triangulated categories H−gmod ∼=

Db(Coh(P(V ))), the bounded derived category of coherent sheaves on P(V ) (see [9,

Section IV.3] for the details).

• Consider the graded Hopf algebra H = k[∂]/(∂p), where k is of positive characteristic

p. As shown in [17, Section 3], K0(H−gmod) is again generated by the graded simple

one-dimensional module k0 := H/(∂), subject to the only relation

0 = [H] = [k0] + q[k0] + · · ·+ qp−1[k0]. (4.12)
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Therefore we have the Grothendieck group

K0(H−gmod) ∼= Z[q, q−1]/(1 + q + · · ·+ qp−1) ∼= Z[ζ],

the ring of p-th cyclotomic integers (ζ, being the image of q, is a primitive p-th root of

unity). If we forget about the grading, the same reasoning as above gives us K0(H−

mod) ∼= Z/pZ, the field of p elements. It was this observation that lead Khovanov

to initiate the program of categorification at certain roots of unity. See [17] for more

details about the motivation.

• Let H = Hn be the Taft algebra as in Example 2.2. Inverting Majid’s bosonization

process [25], one can identify the category of Hn-modules with the category whose

objects are Z/nZ-graded Q[ζ]-vector spaces ⊕n−1
i=0 Vi, together with a map d : Vi −→

Vi+1 of degree one such that dn = 0, and morphisms are homogenous degree-zero maps

of graded vector spaces commuting with d. Under this identification, it is readily seen

that the indecomposable projective modules are precisely the shifts of the module

P0 := (Q[ζ]
·1−→ Q[ζ]

·1−→ · · · ·1−→ Q[ζ]), (4.13)

where there are n terms of Q and the starting term sits in degree zero. The simple

modules are the grading shifts of the one-dimensional module Q[ζ]0 := Q[ζ], with

d acting as zero. Using the same argument as above, we see that K0(Hn−mod) is

generated as an Z[q, q−1]/(qn − 1)-module by [Q[ζ]0] subject to the only relation

0 = [P0] = [Q[ζ]0] + q[Q[ζ]0] + · · ·+ qn−1[Q[ζ]0], (4.14)

and thus K0(Hn−mod) ∼= Z[q]/(1 + q + · · · + qn−1). In particular, when n = p, this

gives rise to a characteristic zero categorification of the rings of the p-th cyclotomic

integers.
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Chapter 5

Morphism spaces

In this chapter we further analyze the Hom spaces introduced previously for the categories

B−mod and C(A,H). We will see that they are in fact the spaces of H-invariants of some

naturally enriched Hom spaces that we will introduce in this chapter.

5.1 The Hopf module Hom

As before, we assume that H is a finite-dimensional (graded) Hopf algebra over k, or more

generally, a finite-dimensional Hopf-algebra object in some k-linear symmetric monoidal

category (for an example of such an object, take a graded Hopf super-algebra in the category

of graded super-vector-spaces). Throughout we will continue with the assumption that A is

a left H-module algebra and the notation B = A#H (see the main example 2.8).

Definition 5.1. Let M , N be B-modules. The vector space HomA(M,N) becomes an

H-module by defining for any f ∈ HomA(M,N), m ∈M and h ∈ H

(h · f)(m) :=
∑

h(2)f(S−1(h(1))m).

When A and H are Z−graded and M , N are graded modules, we define the enriched HOMA
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space to be

HOMA(M,N) =
⊕
r∈Z

HomA(M,N{r}),

where N{r} denotes the same underlying A-module N with grading shifted up by r, and the

Hom space on the right hand side stands for the space of degree preserving maps of graded

A-modules. The graded H-module structure on HOMA(M,N) is given by the same formula

for homogeneous elements in H as that in the ungraded case above.

It is readily seen that when M = A, we have HomA(A,N) ∼= N , and, in the graded case,

HOMA(A,N) ∼= N , both as (graded) H-modules.

5.2 The space of chain maps

The newly defined H-module HomA(M,N) (resp. graded H-module HOMA(M,N) in the

graded case) for any hopfological modules M , N is closely related to the Hom spaces in

the abelian category B−mod and the homotopy category C(A,H). We clarify this relation

in this chapter. We will mostly consider the ungraded case, as the graded case follows by

similar arguments.

To avoid potential confusion, we will denote the abstract one dimensional trivial H-

module by k0, i.e., k0
∼= k · v0, where for any h ∈ H

h · v0 = ε(h)v0. (5.1)

When H is graded, we let v0 be homogeneous of degree zero.

Lemma 5.2. Let M , N be hopfological modules over B. Any f ∈ HomB(M,N), regarded

as an element in HomA(M,N), spans a trivial submodule of H, i.e. for all h ∈ H,

h · f = ε(h)f.
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Conversely, any f ∈ HomA(M,N) on which H acts trivially extends to a B-module homo-

morphism. In other words, we have a canonical isomorphism of k-vector spaces:

HomB(M,N) = HomH(k0,HomA(M,N)).

Proof. Since B contains H as a subalgebra, f is H-linear. Therefore for any h ∈ H, m ∈M ,

we have

(h · f)(m) = h(2)f(S−1(h(1)) ·m) = h(2)S
−1(h(1))f(m) = ε(h)f(m).

For the converse, it suffices to see that f is H-linear:

f(h ·m) = ε(h(2))f(h(1) ·m) = (h(2) · f)(h(1) ·m) = h(3) · f(S−1(h(2)) · h(1) ·m)

= h(2) · f(ε(h(1))m) = h · f(m).

This finishes the proof of the first part of the lemma. The last claim is clear.

The right hand side of the canonical identification in the lemma involves taking H-

invariants, of which we now recall the definition.

Definition 5.3. For any H-module V , its space of H-invariants, denoted Z(V ), is defined

to be the k-vector space (in fact an H-submodule),

Z(V ) := HomH(k0, V ) ∼= {v ∈ V |h · v = ε(h)v,∀h ∈ H} ∼= V H .

Likewise, when H and V are graded, we define the total space of homogeneous H-invariants

Z∗(V ) to be the graded k-vector space

Z∗(V ) := HOMH−gmod(k0, V ) ∼= V H .

Moreover, in the graded case, the subspace of homogeneous degree n invariants is defined to
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be the homogeneous degree n part of Z∗(V ),

Zn(V ) := {v ∈ V | deg(v) = n, h · v = ε(h)v, ∀ h ∈ H},

so that Z∗(V ) = ⊕n∈ZZn(V ).

In this notation, we can interpret the subspace of H-invariants in HomA(M,N) as the

analogous notion of “the space of chain maps” in the DG case between two hopfological

modules M , N . Indeed, the above lemma says that

HomB(M,N) ∼= Z(HomA(M,N)) = {f ∈ HomA(M,N)| h · f = ε(h)f, ∀h ∈ H}. (5.2)

Moreover, it allows us to realize the bifunctor HomB(−,−) as the composition of functors

B−mod×B−mod −→ H−mod −→ k−vect

(M,N) 7→ HomA(M,N) 7→ Z(HomA(M,N)),

where k−vect stands for the category of k-vector spaces. From now on, we will refer to

Z(HomA(M,N)) = HomB(M,N) as the space of chain maps between the two hopfological

modules M and N .

This immediately raises the related question: what is the analogue of the space of chain

maps up to homotopy?
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5.3 The space of chain maps up to homotopy

Our main goal in this chapter is to exhibit and explain the following commutative diagram:

B−mod×B−mod
HomA(−,−)

//

&&
HomC(A,H)(−,−)

55

H−mod

Q

��

Z

��

�� π

H−mod H // k−vect.

(5.3)

Here Q is the natural localization (Verdier quotient) functor, the slanted arrow on the left is

the composition of Q with HomA(−,−), and H is the functor of taking “stable invariants”

(see Definition 5.6). We put π on a double arrow to indicate that it is a natural transformation

between two functors π : Z ⇒ H ◦ Q. As in the usual DG case, π will play the role of

passing from the space of cocycles to cohomology, and we will be more precise about its

definition after the next lemma. The composition of Z with HomA(−,−) gives the bifunctor

HomB(−,−), while the functor H ◦ Q ◦ HomA(−,−) (we will omit Q when no confusion

can arise) is just the previously defined HomC(A,H)(−,−) of the homotopy category, which

is labeled as the dotted arrow. Therefore, we can roughly summarize the diagram as saying

that, the functor Z of taking H-invariants descends to a functor H on the stable category

H−mod (this explains the terminology we use for H), and the space of stable invariants

H(HomA(M,N)) computes the “chain maps up to homotopy”, which turns out to be the

same as the hom space from M to N in the homotopy category C(A,H).

To do this, we first need to take a closer look at the ideal of null-homotopic morphisms

in B−mod. By the definition of null-homotopy in B−mod (see Definition 2.5 and Lemma

2.6), to construct HomC(A,H)(M,N), we need to mod out HomB(M,N) by the subspace

of morphisms that factor through the natural inclusion map M
λM−→ M ⊗ H. Denote this

subspace by I(M,N). Now let us look at its preimage in HomA(M,N) under the isomorphism
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of Lemma 5.2.

Lemma 5.4. Under the canonical isomorphism of Lemma 5.2, for any two hopfological

modules M and N , the space I(M,N) of null-homotopic morphisms in HomB(M,N) is

naturally identified with

I(M,N) ∼= Λ · HomA(M,N),

where the right hand side is regarded as a k-subspace of Z(HomA(M,N)). A similar result

holds in the graded case as well.

Proof. That Λ ·HomA(M,N) is contained in Z(HomA(M,N)) follows easily from the left in-

tegral property h·Λ = ε(h)Λ. We need to show that, if f ∈ Z(HomA(M,N)) ∼= HomB(M,N)

satisfies f = Λ · g for some g ∈ HomA(M,N), then f is null-homotopic as a B-module map,

i.e., it factors through as f : M
λM−→ M ⊗ H

g̃−→ N for some B-module map g̃, and vice

versa. To do this, we extend g to be a B-module map g̃ : M ⊗ H −→ N , by setting

g̃(m⊗ h) := (h · g)(m). This map g̃ is H-linear since for any h, l ∈ H and m ∈M

g̃(h · (m⊗ l)) = g̃(h(1) ·m⊗ h(2)l) = (h(2)l · g)(h(1) ·m)

= h(3)l(2)g(S−1(h(2)l(1)) · h(1) ·m) = h(3)l(2)g(S−1(l(1))S
−1(h(2))h(1) ·m)

= h(2)l(2)g(ε(h(1))S(l(1)) ·m) = h(l(2)g(S−1(l(1)) ·m))

= h((l · g)(m)) = hg̃(m⊗ l).

Conversely, given an f ∈ HomB(M,N) = HomA(M,N)H which is null-homotopic, we

need to exhibit a g ∈ HomA(M,N) so that f = Λ · g. The hint is to reverse the above

equalities and define g to be the composition

g : M ∼= M ⊗ 1 ↪→M ⊗H g̃−→ N.

This is only an A-module map, since the first identification is only A-linear. Then, for any
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h ∈ H, m ∈M , we have

g̃(m⊗ h) = g̃(ε(h(1))m⊗ h(2)) = g̃(h(2)S
−1(h(1)) ·m⊗ h(3))

= g̃(h(2) · (S−1(h(1)) ·m⊗ 1)) = h(2)g̃(S−1(h(1)) ·m⊗ 1)

= h(2)g(S−1(h(1)) ·m) = (h · g)(m),

where the fourth equality uses that g̃ is H-linear by assumption, and the fifth equality

holds by definition of g. Now the lemma follows since f(m) = g̃(λM(m)) = g̃(m ⊗ Λ) =

(Λ · g)(m).

In particular, when A = k, we obtain an explicit way of computing morphism spaces in

the category C(k, H) = H−mod.

Corollary 5.5. Let H be a finite-dimensional Hopf algebra over k. The morphism space

of two H-modules M , N in the stable category H−mod is canonically isomorphic to the

quotient space (Homk(M,N))H/(Λ · Homk(M,N)). In other words, we have a bifunctorial

isomorphism:

HomH−mod(M,N) ∼= Z(Homk(M,N))/(Λ · Homk(M,N)).

Likewise, in the graded case,

HOMH−gmod(M,N) ∼= Z∗(HOMk(M,N))/(Λ · HOMk(M,N)).

The right hand side of the above isomorphism is defined for any H-module V in place of

HomA(M,N), which we formalize in the following definition.

Definition 5.6. For any H-module V we define its space of stable invariants to be the

k-vector space

H(V ) := Z(V )/(Λ · V ) ∼= V H/(Λ · V ).
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It is easily seen that H : H−mod −→ k− vect is a functor. Likewise, in the graded case, we

define the total space of graded stable invariants to be

H∗(V ) := Z∗(V )/(Λ · V ) ∼= V H/(Λ · V ),

while the space of degree n stable invariants, denoted Hn(V ), is defined to be the homoge-

neous degree n part of H∗(V ), for any n ∈ Z.

Corollary 5.7. The functor H : H−mod −→ k−vect descends to a cohomological functor

H : H−mod −→ k−vect.

Here, by cohomological we mean that H takes distinguished triangles in H−mod into long

exact sequences of k-vector spaces. Likewise, in the graded case,

H∗ : H−gmod −→ k−gvect,

Hn : H−gmod −→ k−vect

are cohomological functors as well.

Proof. Taking M to be the trivial module k0 in Corollary 5.5, we obtain

H(N) ∼= HomH−mod(k0, N).

Thus H descends to the stable category, and it takes distinguished triangles into long exact

sequences. The graded case follows similarly.

Remark 5.8 (An alternative proof of Corollary 5.7). This corollary can be proven indepen-

dent of Lemma 5.4, which we give here.

• Claim: Let V be any H-module and v0 ∈ V a non-zero vector on which H acts trivially.
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Then the inclusion map kv0 ↪→ V becomes 0 in H−mod if and only if there exists an

element v ∈ V such that

Λ · v = v0.

Thus we have a canonical isomorphism of k-vector spaces

HomH−mod(k0, V ) ∼= Z(V )/(Λ · V ) ∼= HomH−mod(k0, V )/(Λ · V ),

which is functorial in V .

Proof of claim. The inclusion of the trivial submodule

k0
∼= kΛ ↪→ H

implies that the injective envelope of the trivial submodule kΛ is a direct summand of H,

since H is self-injective (part 2 of Proposition 2.1). Denote the injective envelope by I. There

is a direct sum decomposition H = I ⊕ I ′ of H-modules. Let e : H −→ I be the projection.

Since Λe(1) = e(Λ) = Λ ∈ I, e(1) ∈ I is non-zero.

Now let V be as in the lemma and kv0 ↪→ V be an inclusion of a trivial submodule which

becomes stably zero. Then the inclusion map must factor through an injective module, which

we may assume to be the injective envelope of kv0:

kv0
∼= k0 −→ I

f−→ V.

The image of e(1) under f is nonzero since Λf(e(1)) = f(Λe(1)) = f(Λ) = v0. The “only

if” part follows by taking v = f(e(1)).

Conversely if we have such a v that Λ · v = v0, we will show that V contains an injective

summand isomorphic to I containing kv0, and this will finish the proof of the lemma. Since

an injective submodule of V is always a direct summand, without loss of generality, we may
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assume that V = H · v := {h · v|h ∈ H}. Consider the following commutative diagram:

I //

f ##

H

��

kv0
//

��

H · v

g
{{

I ,

where f is the composition of the inclusion of I into H and the action map H −→ H ·

v, and g exists by injectivity of I and satisfies g(v0) = Λ. Notice that f 6= 0 because

Λf(e(1)) = f(Λe(1)) = f(Λ) = Λv = v0 by our assumption. Then the composition g ◦ f is

an endomorphism of I satisfying g ◦f(Λ) = g(v0) = Λ. Since I is indecomposable, g ◦f is an

automorphism. Therefore f is an injective homomorphism and maps I isomorphically onto

its image. Again by the injectivity of I, the image is a direct summand of H · v, as claimed.

The last statement is easy.

Remark 5.9. One possible confusion about the definition of H(HOMA(M,N)) is that,

although this space plays the role analogous to the total space of chain maps up to homotopy

of all possible degrees in the DG case, the latter in turn being the total cohomology group

of the usual RHom complex, it is in general different from the total cohomology we defined

earlier using the (“stablized”) restriction functor Res : C(A,H) −→ H−gmod for an arbitrary

H. In fact by Corollary 5.7, H is cohomological, and we lose information if we forget about

its derived terms. We will return to this point later when discussing derived functors.

We summarize the previous results of this section in the next proposition, which is just a

reformulation of the commutative diagram we exhibited at the beginning of this subsection.

Proposition 5.10. Let H be a finite-dimensional Hopf algebra over k and A be a left H-

module algebra. There are identifications of bifunctors:

Z(HomA(−,−)) ∼= HomB(−,−) : B−mod×B−mod −→ k−vect,
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H(HomA(−,−)) ∼= HomC(A,H)(−,−) : B−mod×B−mod −→ k−vect,

i.e. for any hopfological modules M , N over B = A#H, there are isomorphism of k-vector

spaces

Z(HomA(M,N)) ∼= HomB(M,N),

H(HomA(M,N)) ∼= HomC(A,H)(M,N),

bifunctorial in M and N .

Proof. The first identification is Lemma 5.2, while the second follows from Lemma 2.6 Lemma

5.4, and the definition of H.

The identifications in the proposition above also show that taking Z or H commutes with

direct sums of Hom spaces. The following corollary will be needed later when dealing with

compact objects.

Corollary 5.11. Let I be any index set and Mi, Ni, i ∈ I be hopfological modules. Then

Z(⊕i∈IHomA(Mi, Ni)) ∼= ⊕i∈IZ(HomA(Mi, Ni));

H(⊕i∈IHomA(Mi, Ni)) ∼= ⊕i∈IH(HomA(Mi, Ni)).

Proof. This follows readily from the proposition and the fact that HomH(k0,−) commutes

with arbitrary direct sums.

5.4 Examples

We will give three examples on what homotopic morphisms look like for some of the Hopf

algebras we discussed in Chapter 3. By Lemma 5.4 these are precisely the morphisms of the
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form f = Λ · h for some h ∈ HomA(M,N). Recall that

(Λ · h)(−) =
∑

Λ(2)h(S−1(Λ(1))(−)). (5.4)

• When H is the Hopf super-algebra k[d]/(d2), (i.e., we are in the usual DG algebra

case), Λ = d and for any homogeneous h ∈ HomA(M,N) of degree |h|,

d · h = dh+ (−1)|h|+1hd. (5.5)

The minus signs come from switching d and h in the category of super vector spaces

and S−1(d) = −d. We also recall the familiar diagram depicting a null-homotopic

morphism in the DG case, for comparison with the next two examples.

· · · dM //M i−1

f
��

dM //

h

||

M i

h
{{

f
��

dM //M i+1

h
{{

f
��

dM // · · ·
h
{{

· · ·
dN
// N i−1

dN
// N i

dN
// N i+1

dN
// · · · .

(5.6)

• Let H = Hn be the Taft algebra. In the examples of Chapter 2, we have seen that

a left integral of H is given by Λ = 1
n
(
∑n−1

i=0 K
i)dn−1. Notice that if g =

∑n−1
i=0 gi ∈

HomA(M,N) is a decomposition of g into its homogeneous components,

Λ · g = 1/n(
n−1∑
i=0

Ki)gj = 1/n(
n−1∑
i=0

ζ ij)gj, (5.7)

which can be non-zero only when j = 0, in which case it equals g0, that is, 1/n(
∑n−1

i=0 K
i)

projects any vector onto its degree-zero component. Thus the effect of applying Λ to

any h ∈ HomA(M,N) will only be seen in its homogeneous of degree (1 − n) part.

Without loss of generality we will assume deg(h) = 1−n. Then using the commutator
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relations, we obtain that, on such an h,

dn−1 · h =
∑n−1

j=0 (−1)n−1−jζ(1−n)(n−1−j)(n−1
j

)
ζ
dj ◦ h ◦ dn−1−j

=
∑

j=0(−1)nζ−(j+1)(j+2)/2dj ◦ h ◦ dn−1−j ,

where
(
n
k

)
ζ

=
(n−1)ζ !

(k)ζ !(n−1−k)ζ !
and for any j ∈ N, (j)ζ := 1 + ζ + · · · + ζj−1 is the un-

symmetrized quantum integer j. In the last step, we used that
(
n−1
j

)
ζ

equals

(1 + · · ·+ ζn−1) · · · (1 + · · ·+ ζn−j−1)

(1 + · · ·+ ζj−1) · · · 1
= (−ζ−1) · · · (−ζ−j−1) = (−1)j+1ζ(j+1)(j+2)/2.

Since each of the coefficient (−1)nζ−(j+1)(j+2)/2 is non-zero, we may rescale h compo-

nentwise by this scalar to obtain the formula for a null-homotopic f (c.f. [11, 32]):

f =
n−1∑
j=0

dj ◦ h ◦ dn−1−j. (5.8)

• Consider the (graded) Hopf algebra H = k[∂]/(∂p), where k is of positive characteristic

p. As above, if h ∈ HomA(M,N), we have

∂p−1(h) =

p−1∑
i=0

(−1)p−1−i
(
p− 1

i

)
∂i ◦ h ◦ ∂p−1−i =

p−1∑
i=0

∂i ◦ h ◦ ∂p−1−i. (5.9)

The last equality holds because (−1)i
(
p−1
i

)
= 1 in k. We depict such a morphism in

the following diagram, in comparison with the previous cases.

· · · ∂M //M i−p+1 ∂M //

f
��

M i−p+2

f
��

∂M // · · · ∂M //M i

h

tt

f
��

∂M //M i+1

h

tt

f
��

∂M // · · · ∂M //M i+p−1

h

tt

f
��

∂M // · · ·

· · ·
∂N
// N i−p+1

∂N
// N i−p+2

∂N
// · · ·

∂N
// N i

∂N
// N i+1

∂N
// · · ·

∂N
// N i+p−1

∂N
// · · · .

(5.10)



43

Chapter 6

Cofibrant modules

Adapting the corresponding definition from Keller [14, 15] in the DG case, we define the

notion of cofibrant hopfological modules and give a functorial cofibrant resolution (i.e., quasi-

isomorphism) pM −→ M for any hopfological module M . This will be utilized later when

discussing compact hopfological modules, derived functors and derived equivalences between

hopfological module categories.

In this chapter H will be assumed, as before, to be a finite-dimensional Hopf algebra over

a base field k, A will be assumed to be an H-module algebra, and we set B = A#H.

6.0.1 Cofibrant modules

First we introduce the notion of “cofibrant hopfological modules” in analogy with the DG

case.

Definition 6.1. A B-module P is called cofibrant if for any surjective quasi-isomorphism

M � N of B-modules, the induced map of k-vector spaces

Z(HomA(P,M)) −→ Z(HomA(P,N))
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is surjective. In the graded case, we require instead that the graded H-module map

Z∗(HOMA(P,M)) −→ Z∗(HOMA(P,N))

is surjective in the category of graded k-vector spaces. Notice that this is equivalent to

requiring the same condition on Z0, as M{r} −→ N{r} is a surjective quasi-isomorphism,

for any r ∈ Z, whenever M −→ N is.

Recall from Lemma 5.2 that, Z(HomA(P,M)) = HomB(P,M) consists of “chain maps”

between the hopfological modules P and M . Therefore the definition just says that any

B-module map from P to N factors through a B-module map from P to M . It is rather

straightforward to see that being a “cofibrant module” in the case of DG modules implies

the usual sense of being “K-projective”, as described, for instance, by Bernstein and Lunts

[4]. It says that, for any acyclic DG-module M , the complex HOMA(P,M) is acyclic as

a k[d]/(d2)-module, i.e., the homology of this complex is 0. Indeed, it can be verified by

applying the defining property to the surjective quasi-isomorphism

Cone(IdM) −→M, (6.1)

and observing that HOMA(P,Cone(IdM)) = Cone(IdHOMA(P,M)) is contractible. The follow-

ing lemma is motivated by this discussion.

Lemma 6.2. Let P be a cofibrant hopfological module. Then, for any acyclic module

M ∈ B−mod (resp. B−gmod), the H−module HomA(P,M) (resp. HOMA(P,M)) has trivial

stable invariants,

H(HomA(P,M)) = 0 (resp. H∗(HOMA(M,N)) = 0),
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and thus in the homotopy category, we have

HomC(A,H)(P,M) = 0.

Proof. The proof follows from the discussion before the lemma by replacing the surjection

Cone(IdM) −→M with the cone in the hopfological case M ⊗H IdM⊗ε−−−−→M . More precisely,

let P be a cofibrant hopfological module. Apply HomA(P,−) to the B-module map M ⊗

H
IdM⊗ε−−−−→M , we obtain the induced map

Z(HomA(P,M ⊗H)) � Z(HomA(P,M)),

which is a surjection by the cofibrance assumption. Therefore, for any φ ∈ Z(HomA(P,M)),

we can find Φ ∈ Z(HomA(P,M ⊗H)) which when composed with Id ⊗ ε gives us φ. Since

HomA(P,M⊗H) = HomA(P,M)⊗H is contractible, Φ = Λ ·Ψ for some Ψ ∈ HomA(P,M⊗

H) (Lemma 5.4). Then for any x ∈ P , we have

(Λ · ((Id⊗ ε) ◦Ψ))(x) = Λ(2) · ((Id⊗ ε) ◦Ψ(S−1(Λ(1)) · x)

= (Id⊗ ε)(Λ(2) ·Ψ(S−1(Λ(1)) · x)

= (Id⊗ ε)((Λ ·Ψ)(x))

= (Id⊗ ε)(Φ(x)) = φ(x),

where the second equality holds since Id⊗ ε is H-linear. Therefore by Corollary 5.5, φ = 0

when passing to the stable category. The last claim follows from Proposition 5.10.

Notice that, when H is a finite-dimensional local Hopf algebra, H(HomA(P,M)) = 0

actually implies that the total cohomology HomA(P,M) is 0 in the stable category H−mod.

This follows from the observation that any indecomposable module over H contains a trivial

submodule. Therefore, for such Hopf algebras H, we know that the H-module HomA(P,M)

is projective and injective as an H-module (we will just call such H-modules acyclic when
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no confusion could arise). In fact, this will turn out to be true for any H and any cofibrant

module P . We will show this after introducing some necessary tools.

Our main goal in this chapter is to construct, for each A-module M , a functorial cofibrant

replacement. We make the following definition.

Definition 6.3. We say that a B-module satisfies property (P ) if it is isomorphic to a module

P in the category C(A,H) for which the following three conditions hold (c.f. [14, Section 3]):

(P1) There is a filtration

0 ⊂ F0 ⊂ F1 ⊂ · · ·Fr ⊂ Fr+1 ⊂ · · · ⊂ P,

and the filtration is exhaustive in the sense that

P = ∪r∈NFr;

(P2) The inclusion Fr ⊂ Fr+1 splits as left A-modules (resp. graded left A-modules when

they are graded) for all r ∈ N;

(P3) The submodule F0, as well as the quotients Fr+1/Fr for all r ∈ N, is isomorphic to

direct sums of B-modules of the form A⊗V , where V is an indecomposable H-module

(resp. A⊗ V ∈ B−gmod and V ∈ H−gmod in the graded case).

Equivalently, in the last condition (P3), we may drop the direct sum requirement for inde-

composable V but instead allow V to be any H-module.

We need to clarify the relation between modules with property (P) and cofibrant modules.

First of all we will show that modules with property (P) are cofibrant.

Lemma 6.4. Let P ∈ B−mod (resp. B−gmod) be a module satisfying property (P), and K

be an acyclic B-module. Then the H-module HomA(P,K) is projective and injective as an

H-module.
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Proof. The proof is divided into three steps. First off, we check that free modules of the

form A ⊗ V have the claimed property of the lemma. As H-modules, we have a canonical

isomorphism,

HomA(A⊗ V,K) ∼= Homk(V,K).

Thus the result for A⊗ V follows from Lemma 2.3.

Secondly, we use induction to prove that HomA(Fr, K) is projective and injective (acyclic

for short) for any r ≥ 0. In fact, assuming so for Fr, applying HomA(−, K) to the short

exact sequence of free A-modules

0 −→ Fr −→ Fr+1 −→
⊕
j∈J

A⊗ Vj −→ 0,

we obtain a short exact sequence of H-modules:

0 −→
∏
j∈J

HomA(A⊗ Vj, K) −→ HomA(Fr+1, K) −→ HomA(Fr, K) −→ 0.

By the inductive hypothesis and the previous step, HomA(Fr, K) and
∏

j∈J HomA(A⊗Vj, K)

are acyclic. Thus HomA(Fr+1, K) is acyclic, since in H−mod it is isomorphic to the direct

sum of these acyclic modules.

Finally, by definition, we have the following short exact sequence of free A-modules:

0 −→
⊕
r∈N

Fr
Ψ−→
⊕
s∈N

Fs −→ P −→ 0,
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where the map Ψ is given by the block upper triangular matrix:

Ψ =



IdF0 −ι01 0 0 . . .

0 IdF1 −ι12 0 . . .

0 0 IdF2 −ι23 . . .

0 0 0 IdF3 . . .

...
...

...
...

. . .


, (6.2)

and ιr,r+1 is the inclusion of Fr into Fr+1. Applying HomA(−, K) to the short exact sequence

of free A-modules, we obtain a short exact sequence of H-modules:

0 −→ HomA(P,K) −→
∏

HomA(Fs, K) −→
∏

HomA(Fr, K) −→ 0.

By the second step, the two terms on the right are acyclic. Hence HomA(P,K) is acyclic

and the lemma follows.

Corollary 6.5. If P is a B-module with property (P), then it is cofibrant.

Proof. Let M −→ N be a surjective quasi-isomorphism in B−mod. We have a short exact

sequence of B-modules:

0 −→ K −→M −→ N −→ 0,

where K is acyclic by our assumption. Applying HomA(P,−) to this short exact sequence,

we obtain a short exact sequence of H-modules

0 −→ HomA(P,K) −→ HomA(P,M) −→ HomA(P,N) −→ 0,

since P is projective as an A-module. The above Lemma 6.4 says that HomA(P,K), con-

sidered as an H-module, is projective and injective. Thus the sequence splits and we have a
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direct sum decomposition:

HomA(P,M) ∼= HomA(P,K)⊕ HomA(P,N).

Taking H-invariants on both sides (Proposition 5.10) gives us

Z(HomA(A⊗ V,M)) ∼= Z(HomA(A⊗ V,K))⊕Z(HomA(A⊗ V,N)),

whence the surjectivity Z(HomA(P,M)) � Z(HomA(P,N)) follows.

6.1 The bar resolution

Now we formulate the main result of this chapter and its immediate consequences.

Theorem 6.6. Let H be a finite-dimensional (graded) Hopf (super-)algebra, A be a left H-

module algebra, and set B = A#H. For each module M ∈ B−mod (resp. B−gmod), there

is a short exact sequence in B−mod (resp. B−gmod) which is split exact as a sequence of

A-modules:

0 //M // aM // p̃M // 0 ,

where p̃M satisfies property (P) and aM is an acyclic B-module. Moreover the construction

of the short exact sequence is functorial in M .

We will refer to the construction of the theorem, as well as the cofibrant replacement

in the next corollary, as the “bar resolution” of any hopfological module M , which is the

functorial cofibrant replacement we claimed at the beginning of this chapter.

Corollary 6.7. Under the same conditions as in Theorem 6.6, let M be any hopfological

module M ∈ B−mod.
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(i). There is an associated distinguished triangle, functorial in M inside C(A,H):

M −→ aM −→ p̃M −→ TM.

(ii). In the derived category D(A,H), there is a functorial isomorphism

pM
∼=−→M,

where pM := T−1(p̃M) is a module with property (P).

(iii). The isomorphism in part (ii) arises as the image of a surjective quasi-isomorphism

pM �M in B−mod.

Proof. By applying Lemma 4.3 to the short exact sequence of the theorem, we obtain a

distinguished triangle in C(A,H)

M // aM // p̃M // T (M) ,

which is functorial in M by Theorem 6.6. Since aM is acyclic, it is isomorphic to 0 in

the derived category. By passing to the derived category D(A,H) we obtain a functorial

isomorphism

p̃M
∼=−→ T (M).

Then apply T−1 to this isomorphism p̃M −→ T (M), and define

pM := T−1(p̃M) = p̃M ⊗ ker(ε),

which satisfies property (P) since p̃M does. This proves (i) and (ii). We will postpone the

proof of part (iii) until the end of this chapter, where the explicit surjective quasi-isomorphism

is constructed.
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We reap some other direct consequences of the bar construction, the first of which is the

promised relationship between cofibrant modules and modules with property (P).

Corollary 6.8. Let M be a cofibrant hopfological module. Then M is a direct summand of

a B-module with property (P). Conversely, any B−mod direct summand of a module with

property (P) is cofibrant. In other words, the class of cofibrant modules is the idempotent

completion of the class of modules with property (P) in the abelian category B−mod.

Proof. By part (iii) of Corollary 6.7, we have a surjective quasi-isomorphism pM � M .

Applying the functor HomB(M,−) to this surjection and using the cofibrance condition, we

see immediately that M is a direct summand of pM , which is a module with property (P)

by the same corollary.

Conversely, if M is a direct summand of a property (P) module N , say N ∼= M⊕M ′, then

HomA(N,−) ∼= HomA(M,−) ⊕ HomA(M ′,−) as functors from B−mod to H−mod. Since

a direct summand of a projective and injective H-module is still projective and injective,

HomA(M,K) is acyclic for any acyclic module K, using Lemma 6.4. The same proof as in

Corollary 6.5 shows that M is cofibrant. The rest of the corollary is clear.

The next result gives the promised characterization of cofibrant modules as an analogue

of “K-projective modules” due to Bernstein and Lunts [4].

Corollary 6.9. A hopfological module M is cofibrant if and only if M is projective as an

A-module, and for any acyclic module K, the H-module HomA(M,K) is projective and

injective.

Proof. The “if” direction follows from the the same argument we used in Corollary 6.5. The

“only if” part follows from the above Corollary 6.8, the corresponding result for property

(P) modules 6.4, and the fact that an injective submodule of any H-module is an H-direct

summand.

The last immediate consequence of the theorem we record here is the equivalence between

D(A,H) and the homotopy category of property (P) (resp. cofibrant) objects.
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Corollary 6.10. Let P(A,H) (resp. CF(A,H)) be the full triangulated subcategory of

C(A,H) whose objects consist of hopfological modules satisfying property (P) (resp. cofi-

brant modules). Then the following statements hold.

1. The morphism space between any two objects P1, P2 in P(A,H) (resp. CF(A,H))

coincides with the morphism space of these objects in the derived category:

HomP(A,H)(P1, P2) ∼= HomD(A,H)(P1, P2).

In fact, for any P with property (P) (resp. cofibrant), there is an isomorphism of

functors

HomC(A,H)(P,−) ∼= HomD(A,H)(P,−).

2. The composition of functors

P(A,H) ⊂ C(A,H)
Q−→ D(A,H)

(
resp. CF(A,H) ⊂ C(A,H)

Q−→ D(A,H)
)
,

where Q is the localization functor, is an equivalence of triangulated categories.

3. The bar resolution is a functor p : D(A,H) −→ P(A,H) which is the left adjoint to

the composition functor P(A,H) ⊂ C(A,H)
Q−→ D(A,H).

Proof. The first claim follows from standard homological algebra arguments, using Lemma

6.2. It goes as follows. By definition of morphisms in D(A,H), it suffices to show that,

for any quasi-isomorphism s : X −→ P in C(A,H), where P is either with property (P) or

cofibrant, there exists a morphism

t : P −→ X

in C(A,H) such that ts = IdP . The cone of s is acyclic, giving a distinguished triangle in

C(A,H): X
s−→ P −→ Cone(s) −→ TX. Applying HomC(A,H)(P,−) produces the desired
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isomorphism

HomC(A,H)(P,X) ∼= HomC(A,H)(P, P ).

The result follows. The second and third claims are easy, and we leave them as exercises to

the reader.

Remark 6.11. To summarize the notions we introduced in this chapter, we have an inclusion

of diagrams inside the abelian category B−mod:

(Modules with property (P)) ⊂ (Cofibrant modules) ⊂ (Hopfological modules).

The previous corollary can be summarized as saying that these inclusions in turn give equiva-

lences of the homotopy categories P(A,H) and CF(A,H) with the derived categoryD(A,H).

6.2 Proof of Theorem 6.6

The simplicial bar resolution of an algebra. Recall that for an algebra A over k (the

construction works more generally over Z), the simplicial bar resolution of A is a projective

resolution of A as a module over the envelope algebra A⊗ Aop, i.e., as an (A,A)-bimodule.

We review its construction briefly here. Standard details about bar resolutions can be found

in Loday’s monograph [22, Chapter I].

Let (C•, di, si) be a simplicial module over the base field k, where di is the face map, and

si is the degeneration map, satisfying the commutator relation

didj = dj−1di if i < j, disj =


sj−1di if i < j,

id if i = j, j + 1,

sjdi−1 if i > j + 1.

(6.3)

One can naturally associate with such a simplicial module a complex by defining the dif-
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ferential δ : Cn −→ Cn+1 as the alternating sum of the face maps δ =
∑n−1

i=0 (−1)idi. One

then checks readily using the commutator relations in the definition that (C•, δ) becomes a

complex. Now we apply this construction to the Hochschild complex.

Definition 6.12. The Hochschild simplicial module of a k-algebra A is the simplicial mod-

ule (C(A), di, si), where for each n ≥ 0, C−n = A⊗(n+1), and Cn+1 = 0. The face and

degeneration maps are defined by

di(a0 ⊗ a1 ⊗ · · · ⊗ an) =


a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if 0 ≤ i ≤ n− 1,

ana0 ⊗ a1 · · · ⊗ an−1 if i = n,

and

si(a0 ⊗ a1 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 · · · ⊗ an.

We have the following well-known result.

Lemma 6.13. The associated simplicial bar complex (C−n = A⊗(n+1), δn) is a contractible

complex, giving a resolution of A as an (A,A)-bimodule by free bimodules.

Proof. A homotopy is given by the “extra-degeneracy”

s : A⊗n −→ A⊗(n+1) , a0 ⊗ . . .⊗ an−1 7→ 1⊗ a0 ⊗ . . .⊗ an−1,

for any n ∈ N.

Proof of Theorem 6.6: construction. Now we begin with the construction of the bar

resolution. The first observation to make is that, in the recap above, when A is a left H-

module algebra, all the face and degeneration maps are H-module maps. For instance, the

map δ0 : A⊗ A −→ A, δ0(a0 ⊗ a1) = a0a1 is the multiplication map, which is an H-module

map by definition. Now we apply the cone construction (Definition 3.3) to this map and
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obtain

Cone(δ0) ∼= A⊗ A⊗ (H/kΛ)⊕ A, (6.4)

the isomorphism viewed as a (A,A)-bimodule map (A acts trivially on the (H/kΛ) factor).

However, this isomorphism is not an H-module isomorphism. The H-module structure on

the cone is defined in a slightly abstract way using the pushout property, which is not

preserved under this identification. We can give a more explicit description as follows, but

it is not necessary for the construction below.

We complete Λ to a basis {hi|i = 1, . . . , r, hr = Λ, r = dim(H)} of H. The left action of

H on itself can be explicitly described in this basis by setting

h · hi =
∑
j

c(h, i)jhj.

Now take a basis {ak|k ∈ I} of A, where I is some index set so that the cone has as a basis

of elements

{ak ⊗ al ⊗ hi|i = 1, . . . , r − 1, k, l ∈ I} ∪ {ak|k ∈ I}.

The H-action is given as follows,

h · ak = hak;

h · (ak ⊗ al ⊗ hi) =
∑

(h)

(
h(1)ak ⊗ al ⊗ hi + ak ⊗ h(2)al ⊗ hi + ak ⊗ al ⊗ h(3)hi

)
=

∑
(h){
∑r−1

j=1

(
c(h(3), i)jak ⊗ al ⊗ hj

)
+ c(h(1), i)rak ⊗ al ⊗ hr

+h(1)ak ⊗ al ⊗ hi + ak ⊗ h(2)al ⊗ hi}

=
∑

(h){
∑r−1

j=1

(
c(h(3), i)jak ⊗ al ⊗ hj

)
+c(h(3), i)rak ⊗ al ⊗ Λ + c(h(3), i)rakal − c(h(3), i)rakal

+h(1)ak ⊗ al ⊗ hi + ak ⊗ h(2)al ⊗ hi}

≡
∑

(h){
∑r−1

j=1

(
c(h(3), i)jak ⊗ al ⊗ hj

)
− c(h(3), i)rakal

+h(1)ak ⊗ al ⊗ hi + ak ⊗ h(2)al ⊗ hi},

where in the last equality, we have used that ak ⊗ al⊗Λ + akal ≡ 0 in the cone. Notice that
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when H is the Hopf super-algebra k[d]/(d2), and if we take the basis of H to be {1, d}, it is

readily seen that the action of d recovers the usual “connection map” from the cone to T (A)

in the standard distinguished triangle associated with δ0 : A⊗ A −→ A.

Next, we will lift the map δ1 : A⊗A⊗A −→ A⊗A to a map δ̃1 : A⊗A⊗A⊗(H/kΛ) −→

Cone(δ0), as follows. First off we define a map:

A⊗ A⊗ A⊗H −→ A⊗ A⊗H ⊕ A

a⊗ a′ ⊗ a′′ ⊗ h 7→ (δ1(a⊗ a′ ⊗ a′′)⊗ h, 0)
(6.5)

The submodule A⊗ A⊗ A⊗ kΛ of A⊗ A⊗ A⊗H is mapped into the module

Im(A⊗ A λA⊗A⊕δ0−−−−−→ A⊗ A⊗H ⊕ A), (6.6)

since (δ1(a⊗ a′ ⊗ a′′)⊗ Λ, 0) = ((δ1(a⊗ a′ ⊗ a′′)⊗ Λ, δ0δ1(a⊗ a′ ⊗ a′′))), where we used that

δ0δ1 = 0. Therefore, this map descends to the quotient and gives rise to δ̃1:

δ̃1 : A⊗ A⊗ A⊗ (H/kΛ) −→ Cone(δ0) (6.7)

Also observe that δ̃1 kills elements in the submodule Im(δ2)⊗ (H/kΛ).

Then we can construct the cone of δ̃1. Recall from the definition of the cone construc-

tion that in Cone(δ0), A is naturally an H-submodule, while the quotient Cone(δ0)/A is

isomorphic to the H-module A ⊗ A ⊗ (H/kΛ). Thus the cone of δ̃1 has a filtration by

(A,A)-bimodules,

0 ⊂ A ⊂ Cone(δ0) ⊂ Cone(δ̃1), (6.8)

whose subquotients are respectively A, A⊗2 ⊗ (H/kΛ), and A⊗3 ⊗ (H/kΛ)⊗2. These obser-

vations will allow us to construct the bar resolution inductively.

Now assume we have inductively constructed:

1. Cn = Cone(δ̃n : A⊗(n+2) ⊗ (H/kΛ)⊗n −→ Cn−1) ∈ B−mod;
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2. For any x ∈ (H/kΛ)n, a ∈ A⊗(n+3) we have δ̃n(δn+1(a)⊗ x) = 0.

This assumption implies that Cn−1 is a submodule of Cn. Then using another induction

argument, we see that Cn has an exhaustive filtration

F • : 0 = F−1 ⊂ F 0 ⊂ · · · ⊂ F p−1 ⊂ F p ⊂ · · · ⊂ F n+1 = Cn, (6.9)

whose subquotients F n/F n−1 are isomorphic to A⊗(n+1)⊗ (H/kΛ)⊗n. In particular, this says

that Cn satisfies “property (P)”, and therefore is a cofibrant B-module as defined earlier.

Now we construct the B-module map δ̃n+1. Tensoring with the identity map of (H/kΛ)⊗n,

we have a map A⊗(n+3) ⊗ (H/kΛ)⊗n −→ A⊗(n+2) ⊗ (H/kΛ)⊗n, which in turn gives rise to a

map:

A⊗(n+3) ⊗ (H/kΛ)⊗n ⊗H −→ A⊗(n+2) ⊗ (H/kΛ)⊗n ⊗H ⊕ Cn−1

a⊗ x⊗ h 7→ (δn+1(a)⊗ x⊗ h, 0)
, (6.10)

where h ∈ H, x ∈ (H/kΛ)⊗n, and a ∈ A⊗(n+3). This map descends to the desired

δ̃n+1 : A⊗(n+3) ⊗ (H/kΛ)⊗(n+1) −→ Cn (6.11)

since elements of the form a⊗ x⊗ Λ are sent to

a⊗ x⊗ Λ 7→ (δn+1(a)⊗ x⊗ Λ, 0) = (δn+1(a)⊗ x⊗ Λ, δ̃n(δn+1(a)⊗ x)),

and by our inductive hypothesis δ̃n(δn+1(a) ⊗ x) = 0. Finally, we verify the inductive

hypothesis 2 for δ̃n+1, which requires that it kills elements in the image of δn+2:

δ̃n+1(δn+2(a)⊗ x⊗ h̄) = δn+1δn+2(a)⊗ x⊗ h̄ = 0,

where h̄ ∈ H/kΛ, x ∈ (H/kΛ)⊗n, a ∈ A⊗(n+4), and we have used that δn+1δn+2 = 0.
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In conclusion, we have constructed inductively a chain of (A,A)-bimodules

A = C−1 ⊂ C0 ⊂ C1 ⊂ · · · ⊂ Cn−1 ⊂ Cn ⊂ . . .

whose subquotients are

Cn/Cn−1
∼= A⊗(n+2) ⊗ (H/kΛ)⊗(n+1).

We define

aA :=
∞⋃

n=−1

Cn,

which fits into a short exact sequence

0 // A // aA // p̃A // 0 .

We may regard any left B-module M as an A-module by restriction. Tensoring the above

sequence by M gives rise to the short exact sequence

0 //M // aM // p̃M // 0

claimed in the theorem. Our next goal would then be to show that aM in the above short

exact sequence is contractible as an H-module, for any hopfological module M .

Proof of Theorem 6.6: contractibility. Now we show that aM is acyclic, for any A-

module M . To do this we may safely forget about the B-module structures involved and

regard the modules as H-modules. We will show this for aA; the general case follows by the

same argument.

Observe that in the Lemma 6.13, the homotopy s : A⊗n −→ A⊗(n+1) is an H-module

map since A is an H-module algebra. Thus the homotopy allows us to split the terms in the
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original bar complex of A into H-module summands

A⊗n ∼= A(n) ⊕ A(n−1) (6.12)

so that the boundary map δ : A⊗n −→ A⊗(n−1) (an H-module map again) kills the A(n) factor

and identifies the A(n−1) factor with that in A⊗(n−1). Now if we go back to the definition

of the cone C0 as in the previous part, we see that it was constructed as a pushout, and

therefore, as H-modules, we can identify it with

C0
∼= (A⊗2 ⊗H ⊕ A)/({a⊗ a′ ⊗ Λ, aa′|a, a′ ∈ A})

∼= ((A(2) ⊕ A)⊗H ⊕ A)/({((a(2), a)⊗ Λ, a)|a(2) ∈ A(2), a ∈ A})

∼= (A(2) ⊗H ⊕ A⊗H ⊕ A)/({(a(2) ⊗ Λ)|a(2) ∈ A(2)} ⊕ {(a⊗ Λ, a)|a ∈ A})

∼= A⊗ (H/kΛ)⊕ A⊗H.

Then at the second step, we constructed C1 as the cone of δ̃1, which was defined by first

mapping A⊗3 ⊗ H onto A⊗2 ⊗ H ⊕ A via (δ1 ⊗ IdH , 0) and then taking a quotient. With

respect to the decompositions A⊗3 ∼= A(3) ⊕ A(2) and A⊗2 ∼= A(2) ⊕ A, the map is identified

with the map A(3) ⊗H ⊕ A(2) ⊗H −→ A(2) ⊗H ⊕ A⊗H ⊕ A which is the identity on the

A(2)⊗H factor and zero on A(3)⊗H. Therefore, δ̃1 written out in this componentwise form

becomes

δ̃1 : A(3) ⊗ (H/kΛ)⊕ A(2) ⊗ (H/kΛ) −→ A(2) ⊗ (H/kΛ)⊕ A⊗H,

(a(3) ⊗ h′, a(2) ⊗ h) 7→ (a(2) ⊗ h, 0),

for any a(3) ∈ A(3), a(2) ∈ A(2), and h, h′ ∈ H/kΛ. The cone of δ̃1 is then identified as an

H-module with

C1
∼= A(3) ⊗ (H/kΛ)⊗2 ⊕ A(2) ⊗ (H/kΛ)⊗H ⊕ A⊗H.
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Inductively, assume that as H-modules,

Cn−1
∼= A(n+1) ⊗ (H/kΛ)⊗n ⊕

n⊕
i=1

(A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H) (6.13)

and the H-module map δ̃n in the construction procedure is given componentwise by

A⊗(n+2) ⊗ (H/kΛ)n
δ̃n // Cn−1

m m

A(n+2) ⊗ (H/kΛ)⊗n // 0 A(n+1) ⊗ (H/kΛ)⊗n

⊕ ⊕
A(n+1) ⊗ (H/kΛ)⊗n

=

55

⊕ni=1A
(i) ⊗ (H/kΛ)⊗(i−1) ⊗H.

Then as H-modules, the cone of δ̃n is isomorphic to

Cn = Cone(δ̃n) ∼= A(n+2) ⊗ (H/kΛ)⊗(n+1) ⊕ Cone(IdA(n+1)⊗(H/kΛ)⊗n)

⊕
⊕n

i=1(A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H)

∼= A(n+2) ⊗ (H/kΛ)⊗(n+1) ⊕ (A(n+1) ⊗ (H/kΛ)⊗n ⊗H)

⊕
⊕n

i=1(A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H)

∼= A(n+2) ⊗ (H/kΛ)⊗(n+1) ⊕
⊕n+1

i=1 (A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H).

Furthermore, δ̃n+1 : A⊗(n+3)⊗ (H/kΛ)⊗(n+1) −→ Cn, which is constructed as the quotient of

(δn+1 ⊗ Id⊗ Id, 0) : A⊗(n+3) ⊗ (H/kΛ)⊗n ⊗H −→ A⊗(n+2) ⊗ (H/kΛ)⊗n ⊗H ⊕ Cn−1 by the



61

submodule A⊗(n+3) ⊗ (H/kΛ)⊗n ⊗ kΛ, decomposes as the following H-module map.

A(n+3) ⊗ (H/kΛ)⊗(n+1) // 0 A(n+2) ⊗ (H/kΛ)⊗(n+1)

⊕ ⊕
A(n+2) ⊗ (H/kΛ)⊗(n+1)

=

55

A(n+1) ⊗ (H/kΛ)⊗n ⊗H ⊕ Cn−1

This finishes the induction step, and establishes the H-module isomorphism

Cn = Cone(δ̃n) ∼= A(n+2) ⊗ (H/kΛ)⊗(n+1) ⊕
n+1⊕
i=1

A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H.

Taking the union of all n gives us

a(A) ∼=
∞⊕
i=1

A(i) ⊗ (H/kΛ)⊗(i−1) ⊗H ∼=

(
∞⊕
i=1

A(i) ⊗ (H/kΛ)⊗(i−1)

)
⊗H, (6.14)

which is of the form N ⊗H for some H-module N , and the acyclicity follows. This finishes

the proof of Theorem 6.6. 2

Proof of part (iii) of Corollary 6.7. Now we finish the proof of the corollary. Notice that as

(A,A) bimodules,

p(A) =
⋃∞
n=0Cn ⊗ ker(ε)

∼= A⊗ A⊗H/(kΛ)⊗ ker(ε)⊕ · · · ⊕ A⊗(n+2) ⊗ (H/kΛ)⊗(n+1) ⊗ ker(ε)⊕ · · ·

∼= A⊗ A⊗ (k⊕Q)⊕ · · · ⊕ A⊗(n+2) ⊗ (H/kΛ)⊗(n) ⊗ (k⊕Q)⊕ · · · ,

where Q is a projective H-module (see Proposition 3 of [17]). It is then easily seen that

the map A ⊗ A ⊗ k ∼= A ⊗ A
δ0=m−−−→ A extends to pA � A. The cone of this map,

when ignoring the contributions from factors containing tensor products with Q, is just aA,

which is contractible. The corollary follows by inducing (pA � A) up to the resolution
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pM �M .

Remark 6.14. The more general notion of H-module algebra would be “H-module cate-

gory”, which is a graded category (including the cyclic Z/(n)-graded case as well) with a

finite-dimensional (graded) Hopf (super-)algebra action on the Hom spaces between objects.

A first example of such a category which is not an H-module algebra (i.e., there are infinitely

many objects) is the category H−mod. More generally, the graded module category over

B = A#H is another example of such a category. The algebra A itself is an H-module

category with a single object whose endomorphism space is given by A, together with the

defining H action. Our treatment follows Keller’s treatment of DG categories [14] closely

and the above story generalizes without much difficulty to the categorical case.
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Chapter 7

Compact modules

In this chapter, we follow Neeman’s original treatment in [27] to discuss compact hopfological

modules. Thankfully, Neeman’s original setup was general enough that it can be applied

here without essential modification. See also Keller [14, Section 5] for another account of

Neeman’s treatment, where the notion of generators of a triangulated category appears to

be slightly different. However, it turns out that the two notions are equivalent.

Throughout this chapter, we make the same assumption as in the previous chapter that

H is a finite-dimensional Hopf algebra over the base field k, and A is an H-module algebra.

We let D denote a k-linear triangulated category that admits infinite direct sums.

7.1 Generators

We begin with a discussion of the notion of compact generators for D(A,H).

Definition 7.1. An object X ∈ D is said to be compact if the functor

HomD(X,−) : D −→ k−vect

commutes with arbitrary direct sums.
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The following lemma is obvious from the definition and the axioms of triangulated cate-

gories.

Lemma 7.2. In any distinguished triangle in D, if two out of the three objects in the dis-

tinguished triangle are compact, so is the third. 2

The next lemma gives us the easiest examples of compact objects in D(A,H).

Lemma 7.3. For any finite-dimensional H-module V , the hopfological module A ⊗ V is

compact in D(A,H).

Proof. Since A ⊗ V is cofibrant, using Lemma 6.10, we have the following isomorphism of

vector spaces.

HomD(A,H)(A⊗ V,⊕i∈IMi) ∼= HomC(A,H)(A⊗ V,⊕i∈IMi)

∼= H(HomA(A⊗ V,⊕i∈IMi)) ∼= H(Homk(V,⊕i∈IMi))

∼= ⊕i∈IH(Homk(V,Mi)) ∼= ⊕i∈IH(HomA(A⊗ V,Mi))

∼= ⊕i∈IHomD(A,H)(A⊗ V,Mi),

Here, in the fourth equality, we have used the fact that V is finite-dimensional (thus compact)

and taking H commutes with direct sums (Corollary 5.11). The lemma follows.

Corollary 7.4. Let A ⊗ V be as in the previous lemma. Then T n(A ⊗ V ) is compact for

any n ∈ Z.

Proof. Of course, this can be seen without the previous lemma since the shift functors

are automorphisms of D(A,H). Alternatively, recall that the shifts T , T−1 are given by

right tensoring A ⊗ V with the finite-dimensional H-modules H/kΛ, Ker(ε) respectively

(Proposition 3.2). The compactness of T (A ⊗ V ) = A ⊗ V ⊗ (H/kΛ) etc. then follows

directly from the previous lemma.
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Definition 7.5 (Neeman). Let D be as above. We say that D is generated by a set of objects

if there exists a set G = {Gi ∈ D|i ∈ I} so that for any X ∈ D, X ∼= 0 if and only if

HomD(T n(Gi), X) = 0

for all n ∈ Z and Gi ∈ G; D is said to be compactly generated if D is generated by a set G

consisting of compact objects.

As an example of this definition, we show that D(A,H) admits a set of compact genera-

tors.

Proposition 7.6. The derived category D(A,H) is compactly generated by the finite set of

objects G := {A ⊗ V }, where V ranges over a finite set of representatives of isomorphism

classes of simple H-modules.

Proof. It suffices to show that, if an object X ∈ D(A,H) satisfies HomD(A,H)(A⊗ V,X) = 0

for all A⊗ V ∈ G, then X ∼= 0 in D(A,H).

Firstly, we show that the hypothesis implies that HomD(A,H)(A⊗W,X) = 0 for any finite-

dimensional H-module W . We prove this by induction on the length of W , the length 1 case

following by the assumption. Inductively, take any finite-dimensional irreducible submodule

W ′ of W and form the quotient W ′′ = W/W ′. W ′′ has shorter length by construction, and

we have a short exact sequence of cofibrant modules

0 −→ A⊗W ′ −→ A⊗W −→ A⊗W ′′ −→ 0.

This short exact sequence becomes a distinguished triangle of cofibrant modules in D(A,H)

and applying HomD(A,H)(−, X) to the triangle leads to a long exact sequence

· · · −→ HomD(A,H)(T
n(A⊗W ′′), X) −→ HomD(A,H)(T

n(A⊗W ), X)

−→ HomD(A,H)(T
n(A⊗W ′), X) −→ · · ·
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The two end terms vanish by assumption and inductive hypothesis, therefore so does the

middle term.

Next, we show that HomD(A,H)(T
n(A ⊗ W ), X) vanishes for any indecomposable H-

module W (W could be infinite-dimensional). The strategy is to filter W by finite dimen-

sional submodules, which we used in the proof of Lemma 2.3. Tensoring the short exact

sequence there with A, we obtain a short exact sequence of B-modules

0 −→
⊕
i∈I

A⊗Wi
IdA⊗Ψ−−−−→

⊕
i∈I

A⊗Wi −→ A⊗W −→ 0,

where each Wi is finite-dimensional. Applying HomD(A,H)(−, X) to the corresponding dis-

tinguished triangle and using the previous step finishes this step.

Thirdly, we prove the vanishing of HomD(A,H)(T
n(P ), X) for all P with property (P).

Consider the following short exact sequence of B = A#H modules used in Lemma 6.4.

0 −→
⊕
r∈N

Fr
Ψ−→
⊕
s∈N

Fs −→ P −→ 0

An induction argument on q using the previous step shows that HomD(A,H)(T
n(Fr), X) = 0

for all r ∈ N, n ∈ Z. Then applying HomD(A,H)(−, X) to the distinguished triangle associated

with the above short exact sequence gives us a long exact sequence

· · · −→
∏

s∈N HomD(A,H)(T
n(Fs), X) −→ HomD(A,H)(T

n(P ), X)

−→
∏

r∈N HomD(A,H)(T
n+1(Fr), X) −→ · · · .

Both ends vanish and the claim follows

Finally, for any object X ∈ D(A,H), take its bar resolution pX ∼= X (6.7), where pX

satisfies property (P). Then we have

HomD(A,H)(X,X) ∼= HomD(A,H)(pX,X),
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and the right hand side vanishes by the previous step. It follows that IdX ∼= 0 and X ∼= 0,

finishing the proof of the lemma.

Remark 7.7 (On the notion of generators). In the above proposition, we can equivalently

take one compact generator A⊗W where W is a direct sum of simple H-modules, one from

each of the isomorphism classes. Notice that, when H is a local Hopf algebra of finite type, we

can replace condition (P3) of property (P) (Definition 6.3) with the equivalent requirement

that Fr/Fr+1
∼= A instead. Here by finite type we mean that the set of isomorphism classes

of indecomposable modules over H is finite. Indeed, in this case, the dimensions of inde-

composable modules are bounded, and thus any direct sum of indecomposable H-modules

V admits a finite step filtration whose subquotients are isomorphic to the trivial H-module.

Therefore by refining the original filtration of condition (P3) by inducing this filtration on

V , we obtain a new filtration whose subquotients are just isomorphic to the free module

A (with appropriate grading shifts in the graded case). In particular, this allows us to see

immediately that A generates D(A,H) in the stronger sense of Keller [14, Section 4.2]:

• “D(A,H) is the smallest strictly 1 full triangulated subcategory in itself which contains

A and is closed under taking arbitrary direct sums and forming distinguished triangles.”

It is readily seen that this seemingly stronger version of generators implies the notion we

used in Definition 7.5.

By contrast, for almost all finite-dimensional Hopf algebras H, the set of isomorphism

classes of indecomposable H-modules may well be infinite, and there is in general no good

parametrization of these isomorphism classes. Over such an H, it seems that the definition

of property (P) using all indecomposable modules is more natural and fits the construction

of the bar resolution we gave previously. Moreover, using the bar resolution, Proposition 7.6

shows that a natural set of compact generators is given by {A ⊗ V }, where V ranges over

the representatives of isomorphism classes of simple H-modules. Thus one might wonder

1A subcategory D′ of D is called strictly full if any object of D that is isomorphic to some object in D′

must itself be in D′.
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whether in the generic case of H there would still be a similar relation between the two

notions of generators. By a localization theorem of Thomason-Neeman, they are always

equivalent.

Corollary 7.8. The category D(A,H) is the smallest strictly full triangulated subcategory

in itself that contains G = {A ⊗ V } and is closed under taking arbitrary direct sums and

forming distinguished triangles.

Proof. The proof is just a corollary of the following theorem, where we take R = T Z(G) :=

{T n(G)|G ∈ G, n ∈ Z}, and G is the set of compact generators we exhibited in Proposition

7.6.

Theorem 7.9 (Thomason-Neeman). Let D be a compactly generated triangulated category.

Let R be a set of compact objects of D closed under the shift functor T of D. Let R be the

smallest full subcategory of D containing R and closed with respect to taking coproducts and

forming triangles. Then the following statements hold.

1. The category R is compactly generated by the set of generators R.

2. If R is also a set of generators for D, then R = D.

3. The compact objects in R equals Rc = Dc ∩ R. In particular, if R is closed under

forming triangles and taking direct summands, it coincides with Rc.

Proof. This is part of Theorem 2.1 in [27].

7.2 Compact modules

Brown representability theorem. We recall the notion of homotopy colimits in a tri-

angulated category that admits infinite direct sums. Homotopy colimits are used in the

construction of representable functors on the triangulated category (Brown’s representabil-

ity theorem).
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Definition 7.10. Let D be as before. Let {fn : Xn −→ Xn+1|n ∈ N} be a sequence of

morphisms in D. A homotopy colimit of this sequence is an object X ∈ D that fits into a

distinguished triangle as follows:

⊕
n∈N

Xn
Ψ−→
⊕
n∈N

Xn −→ X −→ T

(⊕
n∈N

Xn

)
,

where Ψ is given by the infinite matrix

Ψ =



IdX1 −f1 0 0 . . .

0 IdX2 −f2 0 . . .

0 0 IdX3 −f3 . . .

0 0 0 IdX4 . . .

...
...

...
...

. . .


.

Notice that such an X is unique up to isomorphisms in D.

Theorem 7.11 (Brown representability). Let D be a triangulated category that admits in-

finite direct sums. Suppose D is compactly generated by a set of generators G. A cohomo-

logical functor F : D −→ (k−vect)op is representable if and only if it commutes with direct

sums. When representable, such an F is represented by the homotopy colimit of a sequence

{fr : Xr −→ Xr+1|r ∈ N} where X1 as well as the cone of any fn is represented by a possibly

infinite direct sum of objects of the form T n(G), with G ∈ G and n ∈ Z.

Proof. See [27, Theorem 3.1].

Characterizing compact modules. The fact that D(A,H) is compactly generated al-

lows us to give an alternative characterization of compact hopfological modules as summands

of iterated extensions of a finite number of free modules of the form T n(A ⊗ V ) where V

belongs to the set of simple H-modules. The original idea of the proof is due to Ravenel [31]

and Neeman [28], and a very readable account of the proof is given by Keller [14, Section
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5.3], which we follow.

Definition 7.12. Let D be a triangulated category as above and U , V be two classes of

objects of D. Let U ∗ V be the class of objects X in D that fit into a distinguished triangle

of the form

G1 −→ X −→ G2 −→ T (G1),

where G1 ∈ U and G2 ∈ V . The lemma below says that the operation ∗ is associative, and

therefore we can define unambiguously the class of length n objects generated by W to be

the class of objects in

W ∗W ∗ · · · ∗ W ,

where there are n copies of W . We will refer to each object belonging to W ∗W ∗ · · · ∗ W

for some n ∈ N as a finite extension of objects in W .

Lemma 7.13. The above operation ∗ is associative in the sense that the two classes of objects

(U ∗ V) ∗W, U ∗ (V ∗W) coincide.

Proof. The octahedral axiom for the morphisms u and v and their composition gives us a

commutative diagram:

U

u

��

U

v◦u
��

T−1(W ) // X v
//

��

Z //

��

W

T−1(W ) // V //

��

Y //

��

W

T (U) T (U) ,

where we take Y = Cv◦u, V = Cu and W = Cv. The horizontal and vertical sequences are

distinguished triangles. Read vertically, the diagram says that Z belongs to (U ∗ V) ∗ W ,

while read horizontally, it gives another realization of Z as an object of U ∗ (V ∗W).
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Theorem 7.14 (Ravenel-Neeman). Let D be a triangulated category compactly generated by

a set of generators G. Any compact object of D is then a direct summand of a finite extension

of objects of the form T n(G), where G ∈ G and n ∈ Z.

Sketch of proof. See [31, 28, 14]. The formulation given here is the same as that of [14,

Theorem 5.3]. The idea of proof is to apply Brown’s representability theorem to the co-

homological functor HomD(−,M) for any compact object M ∈ D. Then compactness of

M allows us to factor the identity morphism of X through some Xi, a finite step of the

homotopy-colimit-approximation of X (in the notation of 7.10). It can be seen from the

second part of the Brown representability theorem that Xi ∈ T Z(G) ∗T Z(G) ∗ · · · ∗T Z(G) for

i copies of T Z(G). Finally the theorem follows from a “dévissage” type of argument on the

length of Xi, using the octahedral axiom.

Corollary 7.15. Let Dc(A,H) denote the strictly full subcategory of compact hopfological

modules in D(A,H). It is triangulated and idempotent complete. Any X ∈ Dc(A,H) is a

direct summand of an object which is a finite extension of modules in T Z(G) = {T n(A⊗V )},

where n ∈ Z and V ranges over the set of representatives of isomorphism classes of simple

H-modules. Furthermore, Dc(A,H) is the smallest strictly full triangulated subcategory of

D(A,H) that contains G which is closed under taking direct summands.

Proof. Combine the previous theorem with Proposition 7.6. The last statement follows from

Theorem 7.9.

Definition 7.16. Let A be an H-module algebra over a finite-dimensional Hopf algebra H

over the base field k. We define the Grothendieck group K0(Dc(A,H)) (or K0(A,H) for

short) to be the abelian group generated by the symbols of isomorphism classes of objects

in Dc(A,H), modulo the relations

[Y ] = [X] + [Z],
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whenever there is a distinguished triangle inside Dc(A,H) of the form

X −→ Y −→ Z −→ T (X).

Remark 7.17. Since Dc(A,H) is a (right) triangulated module-category over H−mod, on

the Grothendieck group level, K0(Dc(A,H)) is a (right) module over K0(H−mod). When

H is cocommutative, K0(H−mod) is a commutative ring and there is no need to distinguish

right or left modules over it.

More generally, we can define higher K-groups of A by applying Waldhausen-Thomason-

Trobaugh’s construction to Dc(A,H). We expect a large chunk of the K-theoretic results of

Thomason-Trobaugh [37] and Schlichting [33] to generalize to our case.

7.3 A useful criterion

As another application of the theorem of Thomason-Neeman 7.9 and the notion of com-

pactly generated categories 7.5, we give a useful criterion concerning the fully-faithfulness of

exact functors on a compactly generated triangulated category and natural transformations

between these functors. Of course the main example of such categories we have in mind

are the derived categories of H-module algebras. The criterion will be needed in the next

chapter.

Lemma 7.18. Let D1, D2 be triangulated categories, F, F ′ : D1 −→ D2 be exact functors

between them, and let µ : F ⇒ F ′ be a natural transformation of these functors. Suppose

furthermore that D1 admits arbitrary direct sums and is compactly generated by a set of

generators G, and that F , F ′ commute with direct sums2. Then the following statements

hold.

1. F is fully-faithful if F , restricted to the full subcategory consisting of objects in T Z(G) :=

2This amounts to saying that F (⊕i∈IXi) is a direct sum object for F (Xi), i ∈ I inside D2 although D2

may not admit arbitrary direct sums.
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∪n∈ZT n(G), is fully faithful, and F (G) is compact for all G ∈ G. The converse holds if

F is essentially surjective on objects3.

2. µ is invertible if and only if µ(G) : F (G) −→ F ′(G) is invertible for all G ∈ G.

Proof. To prove 1, notice that the full subcategory consisting of objects X on which the

functor F induces an isomorphism of vector spaces,

HomD1(T
n(G), X) ∼= HomD2(F (T n(G)), F (X)),

forms a strictly full triangulated subcategory of D1. By the compactness assumption on

F (G), this subcategory contains arbitrary direct sums. Now Theorem 7.9 applies since D1

is compactly generated. The converse is true since if F is essentially surjective on objects,

F (G) is then automatically compact whenever G is.

The second claim follows by considering instead the full subcategory in which µX :

F (X) −→ F ′(X) is invertible. Similar arguments as above show that this subcategory is a

strictly full triangulated subcategory, and it contains all the compact generators. Therefore

it coincides with the whole category.

Corollary 7.19. Let F : D1 −→ D2 be an exact functor between k-linear triangulated

categories which are compactly generated and admit arbitrary direct sums. Suppose F also

commutes with direct sums. Let G = {G} be a set of compact generators for D1. Then

F induces an equivalence of triangulated categories if and only if when restricted to the

full subcategory consisting of objects T Z(G) := ∪n∈ZT n(G) it is fully-faithful, and F (G) :=

{F (G)|G ∈ G} is a set of compact generators for D2.

Proof. F induces an equivalence of categories between D1 and the image F (D1). By Theorem

7.9, the image category coincides with D2.

3By “essentially surjective” we mean that any object of D2 is isomorphic to an object in the image of F .
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Chapter 8

Derived functors

In this chapter, we define the derived functors associated with hopfological bimodules. Then

we proceed to prove a sufficient condition for two H-module algebras to be derived Morita

equivalent. As a corollary, we discuss when a morphism of H-module algebras induces an

equivalence of derived categories. The arguments we use are modeled on the DG case, as in

the work of Keller [14, Section 6].

Throughout this chapter, we will assume that H is also a (co)commutative Hopf algebra.

This condition is needed when we define a left module algebra structure on the opposite

algebra Aop of a left module algebra A, and when dealing with derived functors and derived

equivalences. We will make some further remarks on this assumption later.

8.1 The opposite algebra and tensor product

By the construction of B = A#H, it is readily seen that the opposite algebra of B is

isomorphic to the smash product ring Bop = Hop,cop#Aop, where Hop,cop denotes the Hopf

algebra H with the opposite multiplication and opposite comultiplication. Therefore, Aop is

naturally a right Hop,cop-module algebra, or equivalently, a left Hcop-module algebra (Hcop

becomes a Hopf algebra if we equip with it the antipode map S−1). By our assumption H is

(co)commutative, and we can naturally identify Hcop ∼= H (S−1 = S in this case). Therefore,
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we have a left H-module algebra structure on Aop.

Definition 8.1. Let H be a cocommutative Hopf algebra, and A be an H-module algebra

as in the main example 2.8. We define the opposite H-module algebra Aop to be the same

H-module as A but with the opposite multiplication. An analogous definition applies when

A, H are compatibly Z-graded.

Example 8.2. We give an example showing the necessity of assuming H to be cocommu-

tative. Consider an n-DG algebra A equipped with a differential d of degree one (see the

second example of Chapter 4). For any a, b ∈ A, we have

d(ab) = (da)b+ ν |a|a(db), (8.1)

where ν is an n-th root of unity and |a| ∈ Z denotes the degree of a. As such an algebra

can be regarded as a graded module algebra over the Taft algebra Hn at the n-th root of

unity ν (see [2] and the second example of Section 3.4), which is non-commutative and non-

cocommutative. Now in Aop, whose multiplication will be denoted by ◦, we have a ◦ b =

ξ|b||a|ba, where we allow ξ to be some other n-th root of unity. Then

d(a ◦ b) = d(ξ|b||a|ba) = ξ|b||a|(d(b)a+ ν |b|bd(a))

= ξ|b||a|(ξ(|b|+1)|a|a ◦ d(b) + ν |b|ξ(|a|+1)|b|d(a) ◦ b)

= ξ(2|b|+1)|a|a ◦ d(b) + ν |b|ξ|b|(2|a|+1)d(a) ◦ b.

Compare this with the relation we need to make Aop differential graded: d(a ◦ b) = d(a) ◦

b+ η|a|a ◦ d(b). Now assuming A has non-zero terms in each degree, it is easy to see that in

order to make these expressions equal, we need ξ = ±1 and ν = ξ−1. Thus it appears that

the opposite algebra does not carry a natural n-DG structure if ν 6= ±1.

Definition 8.3. Let H be a cocommutative Hopf algebra. Let M be a left Aop#H-module

and N be a left A#H-module. The tensor product space M ⊗AN is naturally an H-module
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by setting, for any m ∈M , n ∈ N and h ∈ H,

h(m⊗ n) :=
∑

(h(1)m)⊗ (h(2)n).

The H-module M ⊗A N is graded if H, A, M , N are compatibly graded.

We have, as H-modules, M ⊗A A ∼= M , and A⊗A N ∼= N.

One checks easily that, when H is cocommutative, we have an equivalence between the

categories of right A#H-modules and the category of left Aop#H-modules. Indeed, for any

right A#H-module M , we define the corresponding left Aop#H-module to be the same

underlying H-module with the left Aop action given by a ◦m := ma, for any element a ∈ A

and m ∈ M . The compatibility of this left Aop-structure with the H-module structure is

guaranteed by the cocommutativity of H.

Now, if M is a B-module which is finitely presented as an A-module (finitely generated

if A is noetherian), we have a canonical isomorphism of H-modules

HomA(M,N) ∼= M∨ ⊗A N, (8.2)

where M∨ denotes the H−module HomA(M,A), equipped with the right A-module structure

from that of the target A. A similar identification holds in the graded case.

8.2 Derived tensor

Our first task is to define the derived tensor functor associated with a hopfological bimodule

and determine when it induces an equivalence of derived categories. We will denote by

A1, A2 two H-module algebras over a finite-dimensional (graded), cocommutative Hopf

(super-)algebra H, and set B1 = A1#H, B2 = A2#H.

Definition 8.4. Let A1, A2 be as above, and define their tensor product H-module algebra

A1⊗A2 to be the usual tensor product of A1, A2 as a k-vector space and the algebra structure
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given by

(a1 ⊗ a2) · (b1 ⊗ b2) := (a1b1)⊗ (a2b2),

for any a1, b1 ∈ A1, a2 b2 ∈ A2. We equip it with the H-action that, for any h ∈ H,

a1 ⊗ a2 ∈ A1 ⊗ A2,

h · (a1 ⊗ a2) :=
∑

h(1)a1 ⊗ h(2)a2.

It is readily checked that A1⊗A2 indeed satisfies the axioms of an H-module algebra under

the assumption that H is cocommutative.

Now let A1, A2 be as above and A1XA2 be an (A1, A2) hopfological bimodule, i.e., a

module over the ring (A1 ⊗ Aop2 )#H. We define the associated tensor and hom functors to

be

A1XA2 ⊗A2 (−) : A2−mod −→ A1−mod, A2N 7→ A1X ⊗A2 N, (8.3)

HomA1(A1XA2 ,−) : A1−mod −→ A2−mod, A1M 7→ HomA1(XA2 ,M). (8.4)

In the above definition and what follows, we omit some of the subscripts whenever no con-

fusion can arise. For instance, HomA1(XA2 ,M) := HomA1(A1XA2 , A1M). The natural left

A2-module structure on the right hand side is compatible with the H-action under the

assumption that H is cocommutative. Therefore HomA1(XA2 ,M) ∈ B2−mod, and more

generally one easily checks that both maps above are compatible with the H-actions on the

algebras and modules, inducing functors on the corresponding B-module categories. We

leave the analogous statements and their verification in the graded case to the reader; their

proofs are similar to the argument we use in the next lemma.

Lemma 8.5. The canonical adjunction between the tensor and hom functors in the above

definition associated with the bimodule A1XA2,

HomA1(X ⊗A2 N,M) ∼= HomA2(N,HomA1(XA2 ,M)),
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is an isomorphism of H-modules, functorial in M and N for any M ∈ B1−mod, N ∈

B2−mod. A similar statement holds in the graded case.

Proof. Recall that under the tensor-hom adjunction, we associate with any element f ∈

HomA2(N,HomA1(XA2 ,M)) the element of HomA1(X ⊗A2 N,M), still denoted f , which

sends x⊗ n to f(n)(x). On one hand, for any h ∈ H, h · f ∈ HomA2(N,HomA1(XA2 ,M)) is

given by

(h · f)(−) = h(2)f(S−1(h(1)) · −) : N −→ HomA1(XA2 ,M).

Thus, for any n ∈ N , x ∈ X, we have from the above assignment

(h · f)(x⊗ n) = (h(2) · f(S−1(h(1)) · n))(x) = h(3)f(S−1(h(1)) · n)(S−1(h(2)) · x).

On the other hand, when regarding f as an element of HomA1(X ⊗A2 N,M) using the

adjunction, the H-action has the effect

(h · f)(x⊗ n) = h(2)f(S−1(h(1)) · (x⊗ n)) = h(3)(f(S−1(h(2)) · x⊗ S−1(h(1)) · n))

= h(3)(f(S−1(h(1)) · n)(S−1(h(2)) · x)).

This shows that the two expressions are equal and the lemma follows.

Taking stable invariants H (Proposition 5.10) of the above canonical isomorphism gives

us the corresponding adjunction in the homotopy categories.

Corollary 8.6. The functors A1X ⊗A2 (−), HomA1(XA2 ,−) descend to adjoint functors in

the homotopy category:

HomC(A1,H)(X ⊗A2 N,M) ∼= HomC(A2,H)(N,HomA1(XA2 ,M))

functorially in M ∈ B1−mod, N ∈ B2−mod. 2
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Definition 8.7. Let A1XA2 be as above. We define the (left) derived tensor functor A1X⊗L
A2

(−) to be the composition

A1X ⊗L
A2

(−) : D(A2, H)
p−→ P(A2, H)

X⊗A2
(−)

−−−−−→ C(A1, H)
Q−→ D(A1, H)

A2M 7→ A1X⊗A2pM,

where p is the functorial bar resolution of Corollary 6.7 and Q is the canonical localization

functor.

Proposition 8.8. Let A1XA2, A1YA2 be (A1, A2) hopfological bimodules, and let

µ : A1XA2 −→ A1YA2

be a map of hopfological bimodules.

1. Suppose A1XA2 is cofibrant when regarded as a B1-module. The functor

A1X ⊗L
A2

(−) : D(A2, H) −→ D(A1, H)

is an equivalence of categories if and only if A2 −→ HomA1(XA2 , XA2) is a quasi-

isomorphism, and {A1X ⊗ V }, when regarded as left B1-modules, is a set of compact

cofibrant generators D(A1, H). Here V ranges over a finite set of representatives of

isomorphism classes of simple H-modules.

2. The map of bimodules µ induces an invertible natural transformation of functors

µL : A1X ⊗L
A2

(−)⇒ A1Y ⊗L
A2

(−)

if and only if µ is a quasi-isomorphism in (A1 ⊗ Aop2 )#H−mod.

Proof. The first statement of the proposition is a consequence of Corollary 7.19, provided we
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know that D(Ai, H) is compactly generated by the set of generators G = {Ai ⊗ V }, i = 1, 2

(Proposition 7.6). We check that under our assumption, the conditions of the corollary are

satisfied. Since T n(M) ∼= M⊗W for some finite-dimensional H-module W (see 3.1 and 3.2),

we have, for any A2 ⊗ V,A2 ⊗ V ′ ∈ G, which are property (P) modules,

HomA2(T
n(A2 ⊗ V ), Tm(A2 ⊗ V ′)) ∼= HomA2(A2 ⊗ V ⊗W,A2 ⊗ V ′ ⊗W ′)

∼= A2 ⊗ Homk(V ⊗W,V ′ ⊗W ′)
α−→ HomA1(X,X)⊗ Homk(V ⊗W,V ′ ⊗W ′)

∼= HomA1(X⊗V ⊗W,X⊗V ′⊗W ′) ∼= HomA1(X⊗A2 (A2⊗V ⊗W ), X⊗A2 (A2⊗V ′⊗W ′)),

where α is a quasi-isomorphism by assumption. Since V , V ′, W andW ′ are finite-dimensional,

we can pull Hom(V ⊗W,V ′⊗W ′) in and out of the A1-hom spaces. Taking stable invariants

of the first and last hom-spaces shows that the morphism spaces in the derived categories

are isomorphic as well (here we use the fact that A1X is cofibrant), thereby establishing the

fully-faithfulness of the tensor functor when restricted to T Z(G). Furthermore, the hypoth-

esis says that the modules A1X ⊗L
A2

(A2 ⊗ V ) ∼= A1X ⊗A2 (A2 ⊗ V ) ∼= A1X ⊗ V for the V as

in the assumption constitute a set of compact cofibrant generators of D(A1, H). Finally, the

functor commutes with direct sums since the tensor product does so.

For the second part, note that X ⊗A2 (A2 ⊗ V ) ∼= X ⊗ V is quasi-isomorphic to Y ⊗A2

(A2 ⊗ V ) ∼= Y ⊗ V for all simple H-modules V if and only if X is quasi-isomorphic to Y .

Now use part 2 of Lemma 7.18.

Corollary 8.9. Let A1XA2 be a hopfological bimodule and A1(pX)A2 be its bar resolution in

(A1 ⊗ Aop2 )#H−mod. Then pX −→ X induces a canonical isomorphism of functors

A1X ⊗L
A2

(−) ∼= A1(pX)⊗A2 (−) : D(A2, H) −→ D(A1, H).
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Proof. By the previous result, we have an isomorphism of functors

A1X ⊗L
A2

(−) ∼= A1(pX)⊗L
A2

(−) : D(A2, H) −→ D(A1, H).

To this end, it suffices to show that, if a bimodule A1PA2 has property (P), then PA2 ⊗A2 M

is quasi-isomorphic to PA2 ⊗A2 pM for any M ∈ B2−mod.

Tensoring the short exact sequence of free A1 ⊗ Aop2 -modules

0 −→
⊕
r∈N

Fr −→
⊕
s∈N

Fs −→ P −→ 0

we used in Lemma 6.4 with the bar resolution pM −→ M and passing to the homotopy

category C(A1, H) (Lemma 4.3), we have a morphism of distinguished triangles

⊕
r∈N(Fr ⊗A2 pM)

��

//
⊕

s∈N(Fs ⊗A2 pM)

��

// P ⊗A2 pM

��

// T (
⊕

r∈N(Fr ⊗A2 pM))

��⊕
r∈N(Fr ⊗A2 M) //

⊕
s∈N(Fs ⊗A2 M) // P ⊗A2 M // T (

⊕
r∈N(Fr ⊗A2 M)).

Taking cohomology (passing to H−mod via Res) and using the “two-out-of-three” property

of triangulated categories (see, for instance, [9, Corollary 4, Section IV.1]), we are reduced

to exhibiting the claimed property for each Fr, r ∈ N. An induction argument on r further

reduces us to the special case when P = A1 ⊗ A2 ⊗ V , which is easily seen to be true:

(A1 ⊗ A2 ⊗ V )⊗A2 pM ∼= A1 ⊗ V ⊗ pM ∼= A1 ⊗ V ⊗M ∼= (A1 ⊗ A2 ⊗ V )⊗A2 M,

where the first and last isomorphisms are that of modules, while the middle one is only a

quasi-isomorphism.

Corollary 8.10. Let A1, A2, A3 be H-module algebras, and A1XA2, A2YA3 be hopfological
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bimodules. Then there is an isomorphism of functors

A1XA2 ⊗L
A2

(A2YA3 ⊗L
A3

(−)) ∼= (A1ZA3 ⊗L
A3

(−)) : D(A3, H) −→ D(A1, H),

where A1ZA3 = A1(pX) ⊗A2 YA3 and A1(pX)A2 stands for the bar resolution of X as an

(A1, A2)-bimodule.

Proof. Easy by Corollary 8.9.

8.3 Derived hom

We next focus on the derived hom functor and exhibit a derived version of the adjunctions

8.5, 8.6.

Definition 8.11. Let A1XA2 be a hopfological bimodule are before. Let pX be the bar

resolution of X as a left B1-module. By our construction, pX = pA1 ⊗A1 X is also a right

B2-module. We define the derived hom functor RHomA1(XA2 ,−) to be the composition

RHomA1(XA2 ,−) : D(A1, H)
HomA1

(pX,−)
−−−−−−−−→ C(A2, H)

Q−→ D(A2, H)

A1M 7→ HomA1((pX)A2 ,M).

The next lemma guarantees that HomA1(pX,−) is well defined on the derived category

D(A1, H).

Lemma 8.12. If A1X̃A2 has property (P) as a left B1-module, then HomA1(X̃A2 , K) is an

acyclic B2-module whenever K ∈ B1−mod is acyclic. Consequently, RHomA1(X̃A2 ,−) de-

scends to a functor:

RHomA1(X̃A2 ,−) : D(A1, H) −→ D(A2, H).
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Likewise, the result holds when “property (P)” is replaced by “cofibrant” in the statement.

Proof. The proof is similar to that of Corollary 8.9. Consider the short exact sequence of

B1-modules 0 −→
⊕

r∈N Fr −→
⊕

s∈N Fs −→ X̃ −→ 0 associated with X̃. Since each

Fr, r ∈ N, and X̃ are free as A1-modules, applying HomA1(−, K) yields a short exact

sequence of B2-modules:

0 −→ HomA1(X̃,K) −→
∏
s∈N

HomA1(Fs, K) −→
∏
r∈N

HomA1(Fr, K) −→ 0.

Thus it suffices to show that HomA1(Fr, K) is acyclic for each r ∈ N. An induction on r

further reduces us to the case of free modules of the form A1 ⊗ N where N is some inde-

composable H-module. This case now follows from Lemma 2.3 since HomA1(A1 ⊗N,K) ∼=

Homk(N,K).

The last claim follows readily from the first part of the lemma and Corollary 6.8.

Remark 8.13. More generally, it is easy to see that RHomA1(−,−) is a bifunctor

RHomA1(−,−) : D(A1 ⊗ Aop2 , H)op ×D(A1, H) −→ D(A2, H).

In particular, when A2
∼= k, we have a bifunctor

RHomA1(−,−) : D(A1, H)op ×D(A1, H) −→ H−mod.

There is another derived Hom-space one can associate with any two hopfological modules

M and N , namely the space of chain maps up to homotopy

H(HomA(pM,N)) = HomC(A,H)(pM,N).

By Proposition 5.10 and the remark that follows it, this is the space of (stable) invariants in

HomA(pM,N), and thus it usually contains less information than the RHom above. Another
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reason that we use the definition above is that it satisfies the right adjunction property with

the derived tensor product functor as shown in the next lemma. Notice that in the DG case,

i.e., H = k[d]/(d2), the natural map of HOM-spaces

RHOMA(M,N)
H−→ HOMC(A,H)(pM,N) ∼= HOMD(A,H)(M,N)

is an isomorphism since the only stably non-zero modules are the graded shifts of the trivial

module k0.

Lemma 8.14. The functor RHom(X,−) is right adjoint to X ⊗L
A1

(−) as functors between

D(Ai, H), i = 1, 2.

Proof. Notice that pX⊗A2N has property (P) as a B1-module whenever N ∈ B2−mod does

(check for N = A2 ⊗ V ). Therefore if M ∈ B1−mod and N ∈ B2−mod, we have

HomD(A1,H)(X ⊗L
A2
N,M) ∼= HomD(A1,H)(pX ⊗A2 pN,M)

∼= HomC(A1,H)(pX ⊗A2 pN,M)

∼= HomC(A2,H)(pN,HomA1(pX,M))

∼= HomD(A2,H)(N,RHomA1(X,M)).

Here the first isomorphism holds by Corollary 8.9; the second holds since pX ⊗A1 pN has

property (P) so that we can use Corollary 6.10; the third holds by adjunction 8.6 in the

homotopy category, while the fourth holds by Corollary 6.10 and the definition of RHom.

Definition 8.15. Let A1XA2 be a hopfological bimodule as before. We define its A1-dual to

be

A2X̌A1 := HomA1(pXA2 , A1),

where its left A2 structure is inherited from the right A2-module structure of pX, while the

right A1 structure comes from that of A1.
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Notice that there is a canonical map

A2X̌ ⊗L
A1
M ∼= HomA1(pX,A1)⊗A1 M −→ HomA1(pX,M) ∼= RHomA1(X,M), (8.5)

which is an isomorphism whenever M is of the form A1 ⊗ V for any finite-dimensional

H-module V .

Proposition 8.16. If X ⊗L
A1

(−) : D(A1, H) −→ D(A2, H) is an equivalence, its quasi-

inverse is given by A2X̌A1 ⊗L (−) : D(A2, H) −→ D(A1, H).

Proof. By the adjunction 8.14, if X ⊗L
A1

(−) is an equivalence, its quasi-inverse is given

by RHomA1(XA2 ,−). Therefore RHomA1(XA2 ,−) commutes with direct sums, and the

corollary now follows from part two of Lemma 7.18 and the observation we made before this

proposition.

8.4 A special case

We specialize the previous results to the case of H-module algebras φ : A2 −→ A1, and the

bimodule A1XA2 := A1A1A2
. Here the right A2-module structure on A1 is realized via the

morphism φ, i.e., a1 · a2 := a1φ(a2) where ai ∈ Ai, i = 1, 2.

Definition 8.17. We define the induction functor

φ∗ : D(A2, H) −→ D(A1, H), φ∗(M) := A1 ⊗L
A2
M

and the restriction functor

φ∗ : D(A1, H) −→ D(A2, H), φ∗(N) := RHomA1(A2, N) ∼= A2N.

Note that RHomA1(A1A2
, N) ∼= HomA1(A1A2

, N) ∼= A2N where A2 acts on N via the mor-

phism φ. The first isomorphism holds since A1 has property (P) as a left B1-module.
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The derived adjunction (Lemma 8.14) gives us

HomD(A2,H)(φ
∗(N),M) ∼= HomD(A1,H)(N, φ∗(M)). (8.6)

We have the following immediate corollary, concerning when a morphism of H-module

algebras induces a derived equivalence of their module categories. The result in the DG case

is already proven in [4, Theorem 10.12.5.1].

Corollary 8.18. Let φ : A2 −→ A1 be a quasi-isomorphism of H-module algebras. Then

the induction and restriction functors

φ∗ : D(A2, H) −→ D(A1, H),

φ∗ : D(A1, H) −→ D(A2, H)

are mutually-inverse equivalences of triangulated categories.

Proof. This is a direct consequence of part 1 of Proposition 8.8. We give a second direct

proof of this important special case following [4, Theorem 10.12.5.1].

We will show directly that, under our assumption, there are quasi-isomorphisms of func-

tors

α : IdD(A2,H) ⇒ φ∗ ◦ φ∗,

β : φ∗ ◦ φ∗ ⇒ IdD(A1,H).

For this purpose, let N be an object of D(A2, H), and let pN
p−→ N be its bar resolution

in D(A2, H). Then set α := p−1 ◦ γ, where γ is the morphism:

γ : pN −→ A1 ⊗A2 pN

n 7→ 1⊗ n.
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Now, γ is a quasi-isomorphism since it can be rewritten as

γ = φ⊗ IdpN : A2 ⊗A2 pN −→ A1 ⊗A2 pN,

and since A1 and A2 are isomorphic in H−mod.

To define β, let M be in D(A1, H). M can be regarded as an object in D(A2, H) via

restriction, and we let pM
p−→ M be its bar resolution in D(A2, H). Then φ∗φ∗(M) ∼=

A1 ⊗A2 pM . Define β to be

β : A1 ⊗A2 pM −→M

a1 ⊗m 7→ a1 · p(m).

To check that it is an isomorphism, consider the commutative diagram below:

A2 ⊗A2 pM
p

((

φ⊗IdpM

��

A1 ⊗A2 pM
β

//M.

Both φ⊗ IdpM and p become isomorphisms under restriction to H−mod. Therefore β is a

quasi-isomorphism of B1-modules, hence an isomorphism in the derived category, as claimed.

The corollary follows.

Corollary 8.19. Let A be a left H-module algebra. Then D(A,H) ∼= 0 if and only if there

exists an element x ∈ A such that

Λ · x = 1.

Furthermore, if x is central in A, C(A,H) ∼= 0.

Proof. We will show that, under the assumption, the H−module map A
λA−→ A⊗H admits
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an H-module retract, defined as

A⊗H −→ A, a⊗ h 7→ (h · rx)(a),

where the rx : A −→ A is the right multiplication on A by x. Then as shown in the proof of

Lemma 5.4, this is an H-module map and we have

a⊗ Λ 7→ Λ(2) · (rx(S−1(Λ(1)) · a))

= Λ(2) · (S−1(Λ(1)) · a · x)

= (Λ(2) · (S−1(Λ(1)) · a))(Λ(3) · x)

= (ε(Λ(1))a)(Λ(2) · x)

= a(Λ · x)

= a .

Therefore, A is contractible as an H-module and Corollary 8.18 implies that D(A,H) is

trivial.

The converse follows by applying Lemma 5.4, since A itself, considered as a hopfological

module, is acyclic in this case. The last claim follows by observing that, if x is central,

left multiplication by x on any B-module M is an A-module homotopy between IdM and

zero.
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Chapter 9

Smooth algebras

In this chapter, we apply the previous results to a very special class of H-module algebras

on which H acts trivially. As a consequence we deduce that the Grothendieck group for the

ground field K0(Dc(k, H)) coincides with K0(H−mod).

9.1 Variants of derived categories

First off, we introduce the analogue of the usual notion of the bounded derived category in

the hopfological case. For simplicity, we will only do this when the H-module algebra A is

noetherian. Since H is finite dimensional, B = A ⊗ H is a finite A-module, and therefore

the noetherian condition on A is equivalent to that on B.

Definition 9.1. Let A be a noetherian H-module algebra. The bounded derived category

Db(A,H) is the strictly full subcategory of D(A,H) consisting of objects which are isomor-

phic to some finitely generated A-module.

Likewise, define the finite derived category Df (A,H) to be the strictly full subcategory

of D(A,H) consisting of objects which are isomorphic to some finite length A-module.

Notice that if A is finite dimensional, the two notions Db(A,H) and Df (A,H) coincide

with each other. In any case, it is readily seen that there is an embedding Df (A,H) ⊂
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Db(A,H), and there is always a bifunctorial pairing

Dc(A,H)×Df (A,H) −→ Df (k, H), (P,M) 7→ RHomA(P,M), (9.1)

where the category Df (k, H) ⊂ H−mod is just the bounded (also finite) derived category

of k.

Definition 9.2. LetA be a noetherianH-module algebra. We define the bounded Grothendieck

group of A, denoted G0(Db(A,H)) (or G0(A,H) for short) to be the abelian group generated

by the symbols of isomorphism classes of objects in Db(A,H), modulo the relations

[Y ] = [X] + [Z]

whenever there is a distinguished triangle inside Db(A,H) of the form

X −→ Y −→ Z −→ T (X).

Likewise, we define the finite Grothendieck groupGf
0(A,H) := G0(Df (A,H)) in an analogous

fashion.

9.2 Smooth basic algebras

Now we exhibit a class of examples where the Grothendieck groupsK0(A,H) can be recovered

from the usual Grothendieck group K ′0(A).

Definition 9.3. Let A be an (graded) artinian algebra over a ground field k. We say that

A is basic in its Morita equivalence class if all simple modules over A are one-dimensional

over k.

Equivalently, A is basic in its Morita equivalence class if and only if A/J(A) ∼= k×· · ·×k,

where J(A) is the (graded) Jacobson radical. Here the number of copies of k equals the
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number of isomorphism classes of simple A-modules, or equivalently, that of indecomposable

projective A-modules.

Definition 9.4. A k-algebra A is called smooth if it has a finite projective resolution as an

(A,A)-bimodule.

In this chapter we mainly focus on the class of (graded finite-dimensional) smooth, basic

artinian algebras. Some examples of such algebras are provided by the path algebras over

oriented quivers without oriented cycles. In fact, such path algebras are hereditary and have

length one (i.e., a two-term) projective resolutions as bimodules over themselves. In what

follows, we will abbreviate the above hypothesis on our algebra A by simply saying that

A is a smooth basic algebra,

meaning that it is artinian (or graded finite-dimensional), smooth, and basic in its Morita

equivalence class. We will regard such an A as an H-module algebra by letting H act trivially

on it. Notice that a B-module may carry some non-trivial H-action.

Lemma 9.5. Let A be an H-module algebra with H acting trivially on it, and let P be

a finitely generated projective A-module with trivial H action. Then, given any finite-

dimensional H-module V , P ⊗ V is cofibrant in B−mod.

Proof. It suffices to show that A⊗V is cofibrant since in this situation P is a direct summand

of An (with trivial H-module structure) for some n ∈ N. The cofibrance of A⊗V is clear.

By the characterization of compact modules in D(A,H) (Corollary 7.15), compact cofi-

brant modules are direct summands of free modules in the derived category. When A is

artinian, the direct summand can be taken in the abelian category B−mod, as shown in the

next result. Note that here we do not assume the H-action on A is trivial.

Lemma 9.6. Let A be an artinian H-module algebra and M ∈ Dc(A,H) be a compact object.

Then M is isomorphic to a finite projective A-module in the derived category.
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Proof. A direct summand of a finitely generated free A-module P in the derived cate-

gory is given by an endomorphism e : P −→ P such that e2 = e in HomD(A,H)(P, P ) =

HomC(A,H)(P, P ). Therefore, by Lemma 5.4, e2 − e = Λ · f for some f ∈ HomA(P, P ). By

the artinian assumption, the endomorphism algebra of a free module is finite-dimensional.

Using the classical Fitting’s lemma 1, we can decompose P into a direct sum of B-modules

(since Λ · f is a map of B-modules),

P ∼= Im(Λ · f)N ⊕Ker(Λ · f)N ,

for N sufficiently large. Here Λ · f acts as an automorphism on Im(Λ · f)N , and it acts on

Ker(Λ · f)N nilpotently. We may remove the summand Im(Λ · f)N since it is contractible by

Corollary 8.19. Note that Ker(Λ · f)N is still a projective A-module. Now Λ · f is nilpotent

on Ker(Λ · f)N , and thus we may lift the idempotent e easily using Newton’s method, which

we leave to the reader as an exercise (see [3, Theorem 1.7.3]).

Therefore, Dc(A,H) consists of modules which are images of finitely generated, projective

A-modules under the localization map. We now look at these modules more closely.

Lemma 9.7. Let A be a smooth basic algebra, and M be a finite-dimensional B-module.

Then M is quasi-isomorphic to some finite-dimensional projective A-module.

Before giving the proof, we recall that the simplicial bar resolution of A as an (A,A)-

bimodule results in an infinite cofibrant hopfological replacement (6.6), even for finitely

generated modules over a finite dimensional algebra A. However, the lemma says that if A

is smooth, there is instead a much smaller cofibrant replacement, i.e., a finite-dimensional

projective A-module. This is made possible since the finite-dimensionality and smoothness

of A provides us with a finite-dimensional projective (A,A)-bimodule resolution of A as

opposed to the infinite simplicial bar complex we used before. Moreover, the proof also

shows that this cofibrant replacement is functorial, in the same way as the bar resolution.

1See, for instance Benson [3, Lemma 1.4.4] for the form of the lemma that is used here.
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Proof. Since A is smooth, it has a finite projective (A,A)-bimodule resolution P• −→ A −→

0. Now as in the bar construction (Theorem 6.6), we can lift this resolution to a hopfological

resolution P̃• −→ A, since the differentials in the chain complex are (trivially) H-module

maps. Now for each finite-dimensional B-module M , we tensor this complex with M to

obtain P̃• ⊗A M −→ M −→ 0. P̃• ⊗A M is finite dimensional since P•, A and M are. It is

also cofibrant by Lemma 9.5. The claim follows.

Proposition 9.8. If A is smooth basic, then there is an equivalence of triangulated categories

Dc(A,H) ∼= Df (A,H).

Proof. Lemma 9.6 shows that any compact module is isomorphic to a finite-dimensional

projective A-module. Since Df (A,H) is, by definition, strictly full, there is an inclusion

functor Dc(A,H) ⊂ Df (A,H). On the other hand, any object in Df (A,H), being isomorphic

to some finite-dimensional module, has a finite cofibrant replacement by the previous Lemma

9.7. Hence the inclusion functor is essentially surjective. The proposition follows.

The following corollary is immediate by taking A = k in the above proposition.

Corollary 9.9. Under the canonical isomorphism D(k) ∼= H−mod, Dc(k) is isomorphic to

the strictly full subcategory of H−mod which consists of objects that are quasi-isomorphic to

finite-dimensional H-modules. �

When A is artinian, the RHom-pairing

RHom(−,−) : Dc(A,H)×Df (A,H) −→ H−mod (9.2)

descends to the Grothendieck groups

[RHomA(−,−)] : K0(A,H)×G0(A,H) −→ K0(H−mod). (9.3)
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Write R := K0(H−mod) for the moment. Notice that if V is a finite-dimensional H-module

algebra, and P , M are B-modules, there is a canonical isomorphism of H-modules

HomA(P ⊗ V,M) ∼= HomA(P,M ⊗ V ∗) ∼= HomA(P,M)⊗ V ∗.

On the Grothendieck group level, this says that the pairing above is sesquilinear, in the sense

that it is linear in the second argument, and ∗ -linear in the first argument, where

∗ : R −→ R, [V ] 7→ [V ∗]

is an involution of the ring R.

Proposition 9.10. Let A be a smooth basic algebra. Then there is an isomorphism of

Grothendieck groups:

K0(Dc(A,H)) ∼= K ′0(A)⊗Z K0(H−mod),

where K ′0(A) denotes the usual Grothendieck group of the algebra A. Likewise, when A is

graded finite dimensional,

K0(Dc(A,H)) ∼= K ′0(A)⊗Z[q,q−1] K0(H−mod).

Proof. Let {Pi, i = 1, · · · , n} and {Sj, j = 1, · · · , n} be a complete list of isomorphism classes

of indecomposable projective and simple A-modules respectively, and R = K0(H−mod).

Lemma 9.6 says that K0(A,H) as an R-module is generated by the symbols [Pi], i = 1, · · · , n.

In the usual K ′0(A), {[Pi]|i = 0, · · · , n} forms a basis. Thus it suffices to show that the

symbols [Pi] are linearly independent over R in K0(A,H). To do this, we use the above
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sesquilinear pairing

[RHomA(−,−)] : K0(A,H)×K0(A,H) −→ R.

Here we identify K0 with G0 using the previous Proposition 9.8. Since A is basic, we have

HomA(Pi, Sj) =

 k i = j,

0 otherwise.

Since Pi is cofibrant (Lemma 9.5), HomA(Pi, Sj) ∼= RHomA(Pi, Sj) (Lemma 8.12). Hence

the sesquilinear pairing is perfect and {[Pi]|i = 1, · · · , n} forms an R-basis of K0(A,H). The

graded analogue is proved in a similar way using the pairing RHOMA, and the proposition

follows.

In the special case when A = k, the proposition says that K0(H−mod) is the Grothendieck

ring of the ground field.

Corollary 9.11. We have an isomorphism of abelian groups:

K0(k, H) ∼= K0(H−mod) ∼= G0(H−mod).

Remark 9.12. When the ring A is a commutative algebra, the usual tensor product of

A-modules descends to an internal tensor product on Dc(A,H). On the Grothendieck group

level, it turns K0(A,H) into a ring (not necessarily commutative). The above corollary can

then be strengthened into an isomorphism of rings. We leave the details to the reader.
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Chapter 10

Positive algebras

This chapter, similar as the previous one, will also be an application of the general theory

developed earlier. Throughout this chapter we will make the following assumption:

• H is a non-negatively graded finite-dimensional local Hopf (super-)algebra over k.

Here by “non-negatively graded” we mean that H ∼= ⊕k∈NHk, and the Hopf algebra structure

on H is compatible with the grading; while by “local” we mean that H has the augmentation

ideal ker(ε) as the only maximal two-sided ideal, and ker(ε) consists of positively graded

elements. The examples we considered in 2.2 can all be adapted to satisfy this hypothesis.

Some other important examples are provided by the restricted universal enveloping algebra

of a unipotent Lie algebra over a field of positive characteristic, or their quantum analogues.

Throughout, we set

R := K0(H−gmod). (10.1)

By Corollary 9.11, it is also isomorphic to G0(H−gmod). The localness of H shows that R

is a quotient of the ring of quantum integers:

R ∼= Z[q, q−1]/([H]). (10.2)

Notice that, by the uniqueness of integrals (see the discussion before Proposition 2.1), the
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socle of H is 1-dimensional and spanned by Λ, while the head of H is given by ε : H −→ k.

It follows from Lemma 4.3 that, in the Grothendieck group,

[H] = qdeg(Λ) + · · ·+ 1, (10.3)

so that R is a free Z-module of rank deg(Λ).

10.1 Positive H-module algebras

We first introduce the main objects of study in this chapter. Let H be a Hopf algebra as

discussed above.

Definition 10.1. Let A ∼= ⊕k∈ZAk be a Z-graded algebra over the ground field k.

(i) An H-module algebra A is called positive if the following three conditions hold:

(ii.1) A is supported on non-negative degrees: A ∼= ⊕k∈NAk, and it is finite-dimensional

in each degree.

(ii.2) The homogeneous degree-zero part A0 is semisimple.

(ii.3) The Hopf algebra action of H on A is compatible with the gradings, i.e.

Hk ⊗ Al −→ Ak+l,

for any k, l ∈ N, and the action is trivial on A0.

(ii) A positive H-module algebra A is called strongly positive over k if A0 is isomorphic to

a product of matrix algebras over k.

Let A be a positive H-module algebra, and {εi|i ∈ I} be a complete list of pairwise non-

isomorphic, indecomposable idempotents in A0. Let A′ := ⊕k>0A
k be the augmentation ideal

with respect to the natural projection A � A0. Define for each i ∈ I the indecomposable
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projective A-module Pi := A · εi, and the simple A-module Si := Pi/(A
′ ·Pi) ∼= A0 · εi. When

A is strongly positive, the endomorphism algebra of each Si is isomorphic to k.

Example 10.2. We give two examples of positive H-module algebras. Let H := k[∂]/(∂p)

over a field of characteristic p > 0, and deg(∂) := 1.

• The ground field Fp equipped with the zero differential is strongly positive, while the

extension filed Fpr(r > 1) with the trivial differential is positive but not strongly

positive over Fp.

• Let A := k[Q]/(R) be the path algebra associated with some oriented quiver Q modulo

a set R of homogeneous relations, and let c be a homogenous degree two element such

that cp ∈ (R). Define a differential action ∂ on A by taking the commutator with c.

Then A is a strongly positive H-module algebra.

The collection of all graded hopfological modules over an H-module algebra A forms an

abelian category, which we denote by B−gmod, where B = A#H. This category is equipped

with a grading shift endo-functor {1}, where M{1}k = Mk+1. Given two hopfological

modules M,N , we write Homi
A(M,N) = Hom0

A(M,N{i}) for the space of A-module maps

from M to N of degree i. Then we set

HOMA(M,N) = ⊕i∈ZHomi
A(M,N), (10.4)

which is a graded vector space. Similarly, we write Homi
B(M,N) for those homogeneous

degree-i maps which commute with the H-action, while letting HOMB(M,N) be the to-

tal graded space. The graded space HOMA(M,N) is equipped with a graded H-module

structure via

h(f)(m) = h(2)f(S−1(h(1)m)) (10.5)

for any f ∈ HOMA(M,N) (see Definition 5.1). Also recall from Lemma 2.6 that two mor-

phisms f1, f2 : M −→ N of hopfological modules are called homotopic if there exists an
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A-module map h : M −→ N such that

f1 − f2 = Λ(h) =
∑

Λ(2) ◦ h ◦ S−1(Λ(1)). (10.6)

We define the notion of finite cell modules for positive H-module algebras.

Definition 10.3. Let A be a positive H-module algebra. A hopfological module M is said

to be a finite cell module if there is a finite-step increasing filtration F • on M such that

each subquotient F •(M)/F •−1(M) is either zero or isomorphic to Pi{li} for some i ∈ I and

li ∈ Z. The collection of all finite cell modules is denoted by F(A).

Remark 10.4. By definition, if M is a finite cell module, it fits into a convolution diagram

in the homotopy category C(A,H) and derived category D(A,H)

0 = Fn−1
// Fn //

��

Fn+1
//

~~

· · · // Fm−1
// Fm = M,

zz

Grn

[1]
bb

Grn+1

[1]
^^

Grm−1

[1]
aa

(10.7)

where n is the smallest integer that Fn 6= 0, m is the smallest integer that Fm = M , and

Grk := F k(M)/F k−1(M) is either 0 or Pi{li} for some i ∈ I and li ∈ Z.

Theorem 7.14 gives us the following.

Corollary 10.5. Let A be a positive H-module algebra. Then Dc(A,H) is the smallest

strictly full idempotent complete triangulated subcategory in D(A,H) containing Pi{r} for

all i ∈ I and r ∈ Z. �

10.2 Grothendieck groups of positive algebras

Our main goal of this chapter is a numerical understanding of the Grothendieck groups

of positive H-module algebras in terms of the classical Grothendieck groups of A. If A

is a graded ring, let K ′0(A) be the usual Grothendieck group of finitely generated graded
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projective A-modules, and G′0(A) be the Grothendieck group of graded finite length A-

modules. Both of these are Z[q, q−1] modules under the grading shift. We will see in Corollary

10.12 that, for a positive p-DG algebra A, there are isomorphisms

K0(A,H) ∼= K ′0(A)⊗Z[q,q−1] R, G0(A,H) ∼= G′0(A)⊗Z[q,q−1] R. (10.8)

The main idea is that, for positive H-module algebras, any compact module in D(A,H)

is quasi-isomorphic to a finite cell module. The symbol of a finite cell module in K0(A,H)

is clearly in the span of the symbols of the projective modules Pi. It is straightforward to

show that {[Pi]}i∈I forms an R-basis of K0(A,H), just as it forms a Z[q, q−1] basis of K ′0(A).

Lemma 10.6. Let A be a positive H-module algebra. The following statements hold.

(i) If 0 −→ M1 −→ M −→ M2 −→ 0 is a short exact sequence of hopfological modules

and M1,M2 ∈ F(A), then M ∈ F(A). In particular the category F(A) is closed under

taking finite direct sums.

(ii) The category F(A) is preserved under tensor multiplication by finite dimensional H-

modules.

Proof. The first part of the lemma is immediate from the definition. Using (i) to prove (ii)

it suffices to see that Pi⊗V ∈ F(A), where V is an indecomposable H-module. Any such V

has a filtration whose associated graded modules are one-dimensional, and the result follows

from (i) again.

Corollary 10.7. The image of F(A) in the homotopy category C(A,H) is closed under

grading shifts, finite direct sums, cohomological shifts, and taking cones. �

Proof. This follows from the previous lemma.

Lemma 10.8. Let A be a positive H-module algebra and M ∈ F(A) be a finite cell module.

Suppose M ∼= M1 ⊕M2 is a decomposition of M in B−gmod. Then M1,M2 are finite cell

modules.
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Proof. It suffices to show that both Mi, i = 1, 2, can be equipped with a finite-cell filtration.

Let m = ⊕k>0A
k ⊂ A be the graded radical of A. Since A is a positive H-module algebra,

H preserves the ideal m. Then M/mM carries a natural A0#H-module structure. By the

graded Nakayama’s Lemma, a homgeneous lift of an A0-basis of this space in M consists of

a minimal set of A-module generators for M .

Now suppose M is equipped with a finite-cell filtration. Pick a homogeneous generator

in mj ∈ F j(M)\F j−1(M) which projects to nonzero elements in M/mM . The A0-span of

the image of mj’s in M/mM gives rise to a filtration of M/mM by A0#H-modules.

If there is a B-module decomposition M ∼= M1 ⊕M2, then

M/mM ∼= M1/mM1 ⊕M2/mM2.

Let πi : M −→ Mi be the natural projection maps, i = 1, 2. Whenever πi(mj) projects to

a non-zero element in Mi/mMi, πi(mj) generates an A-submodule of Mi which is projective

over A. Define the filtration on Mi by taking the A-span of such elements, adding one such

element at each step. By the graded Nakayama’s Lemma again, this filtration satisfies the

finite-cell property.

Remark 10.9 (Warning). The direct sum of the quotient filtrations on M1 and M2 is in

general different from the original filtration on M . For instance, this can happen when

M1
∼= M2 so that the splitting M ∼= M1 ⊕M2 is not canonical. One can then filter M with

subquotients isomorphic to M1 in a way which does not agree with the chosen splitting.

Proposition 10.10. Let A be a positive H-module algebra, and denote by F(A) the smallest

strictly full subcategory in C(A,H) containing all finite cell modules. Then F(A) is idempo-

tent complete.

Proof. The proof is analogous to that of Lemma 9.6. Suppose M is a finite cell module,

and ξ ∈ EndB(M) descends to an idempotent in EndC(A,H)(M). We will find a genuine
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idempotent which is homotopic to ξ; its image in B−gmod will then serve as the image of ξ

in C(A,H). Then the result follows from Lemma 10.8

Let η = ξ2−ξ, which must be in the image of Λ inside EndA(M). From condition (ii.1) of

Definition 10.1 it follows that End0
B(M) is finite dimensional over k. The image of Λ inside

it is an ideal. By Fitting’s lemma[3, Lemma 1.4.4], there exists k � 0 such that

M ∼= Im(ηk)⊕Ker(ηk),

inside B−gmod. The map ξ respects this decomposition since it commutes with η.

On Ker(ηk) the map η is nilpotent. Therefore we may use Newton’s method1 to find an

map ξ̃ ∈ EndA∂ (M) whose restriction to Ker(ηk) is an idempotent, and where ξ̃ − ξ is a

polynomial in η without constant term. Thus ξ and ξ̃ are homotopic.

On the other hand, η acts invertibly on Im(ηk). In particular, the identity of Im(ηk) is

also in the image of Λ, and thus Im(ηk) is contractible. Thus ξ (resp. ξ̃) is homotopic to its

composition with the projection to Ker(ηk). In particular, the projection of ξ̃ to Ker(ηk) is

a genuine idempotent homotopic to ξ.

Since the localization functor C(A,H) −→ D(A,H) does not affect morphism spaces

between finite cell modules, we may also use F(A) to denote the smallest strictly full sub-

category of D(A,H) containing all finite cell modules.

Theorem 10.11. Let A be a positive H-module algebra. Then F(A) ⊂ Dc(A,H) and the

inclusion is an equivalence of triangulated categories.

Proof. Corollary 10.7 shows that F(A) is triangulated, while the above proposition shows

that it is idempotent complete. The claim follows readily from Corollary 10.5.

Now we can give an upper bound of the Grothendieck group K0(A,H) for a positive H-

module algebra. By Theorem 10.11, any compact module in D(A,H) is isomorphic to a finite

1See [3, Theorem 1.7.3].
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cell module M ∈ F(A). Using the diagram (10.7), the symbol of M in the Grothendieck

group can be written as an alternating sum of the symbols of the subquotients of the filtration

on M , which by Definition 10.3 are [Pi{li}] = qli [Pi] ∈ K0(A,H) for i ∈ I and li ∈ Z. Since

the usual Grothendieck group K ′0(A) of graded projective A-modules is freely generated over

Z[q, q−1] by {[Pi]|i ∈ I}, we have a surjective map of R-modules:

K ′0(A)⊗Z[q,q−1] R −→ K0(A).

Our next goal will be to show that this map is also injective.

Recall from the previous chapter that the RHOM-pairing between derived categories

RHOMA(−,−) : Dc(A,H)×Df (A,H) −→ D(k, H)

descends to a map on Grothendieck groups

[RHOMA(−,−)] : K0(A,H)×G0(A,H) −→ R.

We will apply this to positive H-module algebras. Since the smash product algebra B is

a semi-local graded ring whose degree zero part is isomorphic to A0, the Jacobson radical

J(B) of this algebra consists of everything in positive degrees, and B/J(B) ∼= A0. It follows

that any finite dimensional module over B admits a finite filtration whose subquotients are

graded shifts of Si, (i ∈ I), so that G0(A,H) is R-generated by the symbols of the simples

[Si]. Applying the RHOM-pairing between the systems of modules {Pi|i ∈ I}, {Sj|j ∈ I},

we have

RHOM(Pi, Sj) ∼=

 Di if i = j,

0 otherwise,

where Di
∼= EndA(Si) is a finite dimensional division algebra over k concentrated in degree

zero. Necessarily H acts trivially on Di. Set di = dimkDi. Now if
∑

i∈I ri[Pi] = 0 is a linear
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relation, with ri ∈ R, we apply [RHOMA(−, Sj)] to get

0 =
∑
i∈I

r∗i [RHOMA(Pi, Sj)] = r∗j [Dj] = r∗jdj[k] ∈ K0(k, H).

Since K0(k, H) ∼= R has no Z-torsion, it follows that rj = 0 for each j. Thus there could

not have been any R-linear relation between the symbols [Pi] ∈ K0(A,H) from the start.

Likewise one shows that there can be no linear relation among the symbols [Si] in G0(A,H).

This discussion gives us the following.

Corollary 10.12. Let A be a positive H-module algebra. Then there are isomorphisms of

Grothendieck groups

K0(A,H) ∼= K ′0(A)⊗Z[q,q−1] R, G0(A,H) ∼= G′0(A)⊗Z[q,q−1] R,

where K ′0 (resp. G′0) stands for the usual Grothendieck group of graded projective (resp.

graded finite dimensional) A-modules. �

10.3 A Künneth formula

We specialize to the case when A is strongly positive, as in Definition 10.1. Recall that in

this case A0 ∼=
∏

i∈I M(ni,k) is a product of matrix algebras with coefficients in the ground

field. If A1, A2 are two such H-module algebras, then so is their tensor product A1⊗A2. This

follows because for any n,m ∈ N, M(n,k) ⊗M(m,k) ∼= M(nm,k). By applying Corollary

10.12 to A1, A2 and A1 ⊗ A2, we obtain the following Künneth-type property for their

Grothendieck groups.

Corollary 10.13. Let A1, A2 be two strongly positive H-module algebras relative to the

ground field k. Then their tensor product is also strongly positive relative to k, and there are
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isomorphisms of Grothendieck groups

K0(A1⊗A2, H) ∼= K0(A1, H)⊗RK0(A2, H), G0(A1⊗A2, H) ∼= G0(A1, H)⊗RG0(A2, H),

which are identifications of R-modules. �

Example 10.14 (A non-example). The above result fails when we remove the “strongly

positive” hypothesis, because it fails for the ordinary Grothendieck groups K ′0 and G′0. Con-

sider H = Fp[∂]/(∂p) and Fpr as an H-module algebra over Fp with the trivial H-action. It

is easy to see that

K0(Fpr , H) ∼= G0(Fpr , H) ∼= Z[q]/(1 + q + · · ·+ qp−1) ∼= Z[ζ], (10.9)

which is spanned by the symbol of [Fpr ]. However Fpr ⊗Fp Fpr ∼= F⊕rpr , so that

K0(Fpr ⊗Fp Fpr) ∼= G0(Fpr ⊗Fp Fpr) ∼= Z[ζ]⊕r, (10.10)

and the Künneth property fails.

Remark 10.15. The Künneth property for ordinary DG algebras that are strongly positive

is a direct consequence of the results in Keller-Nicolas [16] and Schnürer [34]. The discussion

in this chapter is partly motivated by their work.

Unfortunately, the proof here is essentially “numerical,” only giving an isomorphism of

Grothendieck groups rather than a comparison on the level of spectra.

We would like to pose the following general question to the reader: Under what restric-

tions on a p-DG algebra, or more generally, an H-module algebra, does the Künneth formula

hold?

The above result also applies to H-module algebras that are not necessarily strongly

positive, but are Morita equivalent to strongly positive H-module algebras in the sense of

Proposition 8.8.
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Corollary 10.16. Let A1, A2 be two p-DG algebras which are Morita equivalent to strongly

positive p-DG algebras. Then their tensor product is also Morita equivalent to a strongly

positive p-DG algebra, and the Künneth formula holds. �

This version of the Künneth property for the usual Grothendieck groups of certain (DG)

algebras has played a significant role in many known examples of categorification, see for

instance [18].



107

Bibliography

[1] M. Angel and R. Dı́az, On N -differential graded algebras, J. of Pure and Applied Alge-
bra, 210, 673–683, 2007, arXiv:math/0504398.
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